Loading…

Detecting Hidden Layers from Spreading Dynamics on Complex Networks

When dealing with spreading processes on networks it can be of the utmost importance to test the reliability of data and identify potential unobserved spreading paths. In this paper we address these problems and propose methods for hidden layer identification and reconstruction. We also explore the...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-07
Main Authors: Gajewski, Łukasz G, Chołoniewski, Jan, Wilinski, Mateusz
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gajewski, Łukasz G
Chołoniewski, Jan
Wilinski, Mateusz
description When dealing with spreading processes on networks it can be of the utmost importance to test the reliability of data and identify potential unobserved spreading paths. In this paper we address these problems and propose methods for hidden layer identification and reconstruction. We also explore the interplay between difficulty of the task and the structure of the multilayer network describing the whole system where the spreading process occurs. Our methods stem from an exact expression for the likelihood of a cascade in the Susceptible-Infected model on an arbitrary graph. We then show that by imploring statistical properties of unimodal distributions and simple heuristics describing joint likelihood of a series of cascades one can obtain an estimate of both existence of a hidden layer and its content with success rates far exceeding those of a null model. We conduct our analyses on both synthetic and real-world networks providing evidence for the viability of the approach presented.
doi_str_mv 10.48550/arxiv.2101.11758
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2483459333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483459333</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-248bd37b05b6ba932ffe7de922e836be0664995a743e4fc111f8b47bc93de23a3</originalsourceid><addsrcrecordid>eNotjb1OwzAURi0kJKrSB2CzxJxg32sn9ohSoEgRDHSv7OQGpTQ_2Cm0b08QfMsZjnQ-xm6kSJXRWty5cGq_UpBCplLm2lywBSDKxCiAK7aKcS-EgCwHrXHBijVNVE1t_843bV1Tz0t3phB5E4aOv42BXP0r1-fedW0V-dDzYujGA534C03fQ_iI1-yycYdIq38u2fbxYVtskvL16bm4LxOnARNQxteYe6F95p1FaBrKa7IAZDDzJLJMWatdrpBUU0kpG-NV7iuLNQE6XLLbv-wYhs8jxWm3H46hnx93cxuVtjjvB01ES8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483459333</pqid></control><display><type>article</type><title>Detecting Hidden Layers from Spreading Dynamics on Complex Networks</title><source>Publicly Available Content Database</source><creator>Gajewski, Łukasz G ; Chołoniewski, Jan ; Wilinski, Mateusz</creator><creatorcontrib>Gajewski, Łukasz G ; Chołoniewski, Jan ; Wilinski, Mateusz</creatorcontrib><description>When dealing with spreading processes on networks it can be of the utmost importance to test the reliability of data and identify potential unobserved spreading paths. In this paper we address these problems and propose methods for hidden layer identification and reconstruction. We also explore the interplay between difficulty of the task and the structure of the multilayer network describing the whole system where the spreading process occurs. Our methods stem from an exact expression for the likelihood of a cascade in the Susceptible-Infected model on an arbitrary graph. We then show that by imploring statistical properties of unimodal distributions and simple heuristics describing joint likelihood of a series of cascades one can obtain an estimate of both existence of a hidden layer and its content with success rates far exceeding those of a null model. We conduct our analyses on both synthetic and real-world networks providing evidence for the viability of the approach presented.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2101.11758</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Multilayers ; Networks</subject><ispartof>arXiv.org, 2021-07</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2483459333?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Gajewski, Łukasz G</creatorcontrib><creatorcontrib>Chołoniewski, Jan</creatorcontrib><creatorcontrib>Wilinski, Mateusz</creatorcontrib><title>Detecting Hidden Layers from Spreading Dynamics on Complex Networks</title><title>arXiv.org</title><description>When dealing with spreading processes on networks it can be of the utmost importance to test the reliability of data and identify potential unobserved spreading paths. In this paper we address these problems and propose methods for hidden layer identification and reconstruction. We also explore the interplay between difficulty of the task and the structure of the multilayer network describing the whole system where the spreading process occurs. Our methods stem from an exact expression for the likelihood of a cascade in the Susceptible-Infected model on an arbitrary graph. We then show that by imploring statistical properties of unimodal distributions and simple heuristics describing joint likelihood of a series of cascades one can obtain an estimate of both existence of a hidden layer and its content with success rates far exceeding those of a null model. We conduct our analyses on both synthetic and real-world networks providing evidence for the viability of the approach presented.</description><subject>Multilayers</subject><subject>Networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjb1OwzAURi0kJKrSB2CzxJxg32sn9ohSoEgRDHSv7OQGpTQ_2Cm0b08QfMsZjnQ-xm6kSJXRWty5cGq_UpBCplLm2lywBSDKxCiAK7aKcS-EgCwHrXHBijVNVE1t_843bV1Tz0t3phB5E4aOv42BXP0r1-fedW0V-dDzYujGA534C03fQ_iI1-yycYdIq38u2fbxYVtskvL16bm4LxOnARNQxteYe6F95p1FaBrKa7IAZDDzJLJMWatdrpBUU0kpG-NV7iuLNQE6XLLbv-wYhs8jxWm3H46hnx93cxuVtjjvB01ES8A</recordid><startdate>20210725</startdate><enddate>20210725</enddate><creator>Gajewski, Łukasz G</creator><creator>Chołoniewski, Jan</creator><creator>Wilinski, Mateusz</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210725</creationdate><title>Detecting Hidden Layers from Spreading Dynamics on Complex Networks</title><author>Gajewski, Łukasz G ; Chołoniewski, Jan ; Wilinski, Mateusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-248bd37b05b6ba932ffe7de922e836be0664995a743e4fc111f8b47bc93de23a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Multilayers</topic><topic>Networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Gajewski, Łukasz G</creatorcontrib><creatorcontrib>Chołoniewski, Jan</creatorcontrib><creatorcontrib>Wilinski, Mateusz</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gajewski, Łukasz G</au><au>Chołoniewski, Jan</au><au>Wilinski, Mateusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Hidden Layers from Spreading Dynamics on Complex Networks</atitle><jtitle>arXiv.org</jtitle><date>2021-07-25</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>When dealing with spreading processes on networks it can be of the utmost importance to test the reliability of data and identify potential unobserved spreading paths. In this paper we address these problems and propose methods for hidden layer identification and reconstruction. We also explore the interplay between difficulty of the task and the structure of the multilayer network describing the whole system where the spreading process occurs. Our methods stem from an exact expression for the likelihood of a cascade in the Susceptible-Infected model on an arbitrary graph. We then show that by imploring statistical properties of unimodal distributions and simple heuristics describing joint likelihood of a series of cascades one can obtain an estimate of both existence of a hidden layer and its content with success rates far exceeding those of a null model. We conduct our analyses on both synthetic and real-world networks providing evidence for the viability of the approach presented.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2101.11758</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2483459333
source Publicly Available Content Database
subjects Multilayers
Networks
title Detecting Hidden Layers from Spreading Dynamics on Complex Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A46%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Hidden%20Layers%20from%20Spreading%20Dynamics%20on%20Complex%20Networks&rft.jtitle=arXiv.org&rft.au=Gajewski,%20%C5%81ukasz%20G&rft.date=2021-07-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2101.11758&rft_dat=%3Cproquest%3E2483459333%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-248bd37b05b6ba932ffe7de922e836be0664995a743e4fc111f8b47bc93de23a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2483459333&rft_id=info:pmid/&rfr_iscdi=true