Loading…
Detecting Hidden Layers from Spreading Dynamics on Complex Networks
When dealing with spreading processes on networks it can be of the utmost importance to test the reliability of data and identify potential unobserved spreading paths. In this paper we address these problems and propose methods for hidden layer identification and reconstruction. We also explore the...
Saved in:
Published in: | arXiv.org 2021-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gajewski, Łukasz G Chołoniewski, Jan Wilinski, Mateusz |
description | When dealing with spreading processes on networks it can be of the utmost importance to test the reliability of data and identify potential unobserved spreading paths. In this paper we address these problems and propose methods for hidden layer identification and reconstruction. We also explore the interplay between difficulty of the task and the structure of the multilayer network describing the whole system where the spreading process occurs. Our methods stem from an exact expression for the likelihood of a cascade in the Susceptible-Infected model on an arbitrary graph. We then show that by imploring statistical properties of unimodal distributions and simple heuristics describing joint likelihood of a series of cascades one can obtain an estimate of both existence of a hidden layer and its content with success rates far exceeding those of a null model. We conduct our analyses on both synthetic and real-world networks providing evidence for the viability of the approach presented. |
doi_str_mv | 10.48550/arxiv.2101.11758 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2483459333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483459333</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-248bd37b05b6ba932ffe7de922e836be0664995a743e4fc111f8b47bc93de23a3</originalsourceid><addsrcrecordid>eNotjb1OwzAURi0kJKrSB2CzxJxg32sn9ohSoEgRDHSv7OQGpTQ_2Cm0b08QfMsZjnQ-xm6kSJXRWty5cGq_UpBCplLm2lywBSDKxCiAK7aKcS-EgCwHrXHBijVNVE1t_843bV1Tz0t3phB5E4aOv42BXP0r1-fedW0V-dDzYujGA534C03fQ_iI1-yycYdIq38u2fbxYVtskvL16bm4LxOnARNQxteYe6F95p1FaBrKa7IAZDDzJLJMWatdrpBUU0kpG-NV7iuLNQE6XLLbv-wYhs8jxWm3H46hnx93cxuVtjjvB01ES8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483459333</pqid></control><display><type>article</type><title>Detecting Hidden Layers from Spreading Dynamics on Complex Networks</title><source>Publicly Available Content Database</source><creator>Gajewski, Łukasz G ; Chołoniewski, Jan ; Wilinski, Mateusz</creator><creatorcontrib>Gajewski, Łukasz G ; Chołoniewski, Jan ; Wilinski, Mateusz</creatorcontrib><description>When dealing with spreading processes on networks it can be of the utmost importance to test the reliability of data and identify potential unobserved spreading paths. In this paper we address these problems and propose methods for hidden layer identification and reconstruction. We also explore the interplay between difficulty of the task and the structure of the multilayer network describing the whole system where the spreading process occurs. Our methods stem from an exact expression for the likelihood of a cascade in the Susceptible-Infected model on an arbitrary graph. We then show that by imploring statistical properties of unimodal distributions and simple heuristics describing joint likelihood of a series of cascades one can obtain an estimate of both existence of a hidden layer and its content with success rates far exceeding those of a null model. We conduct our analyses on both synthetic and real-world networks providing evidence for the viability of the approach presented.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2101.11758</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Multilayers ; Networks</subject><ispartof>arXiv.org, 2021-07</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2483459333?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Gajewski, Łukasz G</creatorcontrib><creatorcontrib>Chołoniewski, Jan</creatorcontrib><creatorcontrib>Wilinski, Mateusz</creatorcontrib><title>Detecting Hidden Layers from Spreading Dynamics on Complex Networks</title><title>arXiv.org</title><description>When dealing with spreading processes on networks it can be of the utmost importance to test the reliability of data and identify potential unobserved spreading paths. In this paper we address these problems and propose methods for hidden layer identification and reconstruction. We also explore the interplay between difficulty of the task and the structure of the multilayer network describing the whole system where the spreading process occurs. Our methods stem from an exact expression for the likelihood of a cascade in the Susceptible-Infected model on an arbitrary graph. We then show that by imploring statistical properties of unimodal distributions and simple heuristics describing joint likelihood of a series of cascades one can obtain an estimate of both existence of a hidden layer and its content with success rates far exceeding those of a null model. We conduct our analyses on both synthetic and real-world networks providing evidence for the viability of the approach presented.</description><subject>Multilayers</subject><subject>Networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjb1OwzAURi0kJKrSB2CzxJxg32sn9ohSoEgRDHSv7OQGpTQ_2Cm0b08QfMsZjnQ-xm6kSJXRWty5cGq_UpBCplLm2lywBSDKxCiAK7aKcS-EgCwHrXHBijVNVE1t_843bV1Tz0t3phB5E4aOv42BXP0r1-fedW0V-dDzYujGA534C03fQ_iI1-yycYdIq38u2fbxYVtskvL16bm4LxOnARNQxteYe6F95p1FaBrKa7IAZDDzJLJMWatdrpBUU0kpG-NV7iuLNQE6XLLbv-wYhs8jxWm3H46hnx93cxuVtjjvB01ES8A</recordid><startdate>20210725</startdate><enddate>20210725</enddate><creator>Gajewski, Łukasz G</creator><creator>Chołoniewski, Jan</creator><creator>Wilinski, Mateusz</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210725</creationdate><title>Detecting Hidden Layers from Spreading Dynamics on Complex Networks</title><author>Gajewski, Łukasz G ; Chołoniewski, Jan ; Wilinski, Mateusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-248bd37b05b6ba932ffe7de922e836be0664995a743e4fc111f8b47bc93de23a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Multilayers</topic><topic>Networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Gajewski, Łukasz G</creatorcontrib><creatorcontrib>Chołoniewski, Jan</creatorcontrib><creatorcontrib>Wilinski, Mateusz</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gajewski, Łukasz G</au><au>Chołoniewski, Jan</au><au>Wilinski, Mateusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Hidden Layers from Spreading Dynamics on Complex Networks</atitle><jtitle>arXiv.org</jtitle><date>2021-07-25</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>When dealing with spreading processes on networks it can be of the utmost importance to test the reliability of data and identify potential unobserved spreading paths. In this paper we address these problems and propose methods for hidden layer identification and reconstruction. We also explore the interplay between difficulty of the task and the structure of the multilayer network describing the whole system where the spreading process occurs. Our methods stem from an exact expression for the likelihood of a cascade in the Susceptible-Infected model on an arbitrary graph. We then show that by imploring statistical properties of unimodal distributions and simple heuristics describing joint likelihood of a series of cascades one can obtain an estimate of both existence of a hidden layer and its content with success rates far exceeding those of a null model. We conduct our analyses on both synthetic and real-world networks providing evidence for the viability of the approach presented.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2101.11758</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2483459333 |
source | Publicly Available Content Database |
subjects | Multilayers Networks |
title | Detecting Hidden Layers from Spreading Dynamics on Complex Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A46%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Hidden%20Layers%20from%20Spreading%20Dynamics%20on%20Complex%20Networks&rft.jtitle=arXiv.org&rft.au=Gajewski,%20%C5%81ukasz%20G&rft.date=2021-07-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2101.11758&rft_dat=%3Cproquest%3E2483459333%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-248bd37b05b6ba932ffe7de922e836be0664995a743e4fc111f8b47bc93de23a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2483459333&rft_id=info:pmid/&rfr_iscdi=true |