Loading…
Event-triggered Control of Positive Switched Systems with Actuator Saturation and Time-delay
This paper investigates the event-triggered control of positive switched systems with randomly occurring actuator saturation and time-delay, where the actuator saturation and time-delay obey different Bernoulli distributions. First, an event-triggering condition is constructed based on a 1-norm ineq...
Saved in:
Published in: | International journal of automation and computing 2021-02, Vol.18 (1), p.141-154 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates the event-triggered control of positive switched systems with randomly occurring actuator saturation and time-delay, where the actuator saturation and time-delay obey different Bernoulli distributions. First, an event-triggering condition is constructed based on a 1-norm inequality. Under the presented event-triggering scheme, an interval estimation method is utilized to deal with the error term of the systems. Using a co-positive Lyapunov functional, the event-triggered controller and the cone attraction domain gain matrices are designed via matrix decomposition techniques. The positivity and stability of the resulting closed-loop systems are reached by guaranteeing the positivity of the lower bound of the systems and the stability of the upper bound of the systems, respectively. The proposed approach is developed for interval and polytopic uncertain systems, respectively. Finally, two examples are provided to illustrate the effectiveness of the theoretical findings. |
---|---|
ISSN: | 1476-8186 1751-8520 |
DOI: | 10.1007/s11633-020-1245-0 |