Loading…
Rail Detection Based on LSD and the Least Square Curve Fitting
It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not. A convenient and fast method based on line segment detector (LSD) and the least square curve fitting to identify the rail in the image is proposed in this paper. The...
Saved in:
Published in: | International journal of automation and computing 2021-02, Vol.18 (1), p.85-95 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c344t-fc088c8491ae27c326fffd6c19ae0bf64b809d3b9931a38fef9eabe2d03ee923 |
---|---|
cites | cdi_FETCH-LOGICAL-c344t-fc088c8491ae27c326fffd6c19ae0bf64b809d3b9931a38fef9eabe2d03ee923 |
container_end_page | 95 |
container_issue | 1 |
container_start_page | 85 |
container_title | International journal of automation and computing |
container_volume | 18 |
creator | Zheng, Yun-Shui Jin, Yan-Wei Dong, Yu |
description | It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not. A convenient and fast method based on line segment detector (LSD) and the least square curve fitting to identify the rail in the image is proposed in this paper. The image in front of the train can be obtained through the camera on-board. After preprocessing, it will be divided equally along the longitudinal axis. Utilizing the characteristics of the LSD algorithm, the edges are approximated into multiple line segments. After screening the terminals of the line segments, it can generate the mathematical model of the rail in the image based on the least square. Experiments show that the algorithm in this paper can fit the rail curve accurately and has good applicability and robustness. |
doi_str_mv | 10.1007/s11633-020-1241-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484114804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484114804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-fc088c8491ae27c326fffd6c19ae0bf64b809d3b9931a38fef9eabe2d03ee923</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLeAz9HcJGuTF0E3p0JBcHsPaXszO2a7Jangv7ejgk8-3fNwvnPhI-Qa-C1wnt9FgExKxgVnIBQwdUImkM-A6Zngp0NWecY06OycXMS45TzLhVETcv_umh1dYMIqNV1LH13Emg6hWC2oa2uaPpAW6GKiq0PvAtJ5H76QLpuUmnZzSc6820W8-r1Tsl4-recvrHh7fp0_FKySSiXmK651pZUBhyKvpMi893VWgXHIS5-pUnNTy9IYCU5qj96gK1HUXCIaIafkZpzdh-7QY0x22_WhHT5aobQCUJqroQVjqwpdjAG93Yfm04VvC9weLdnRkh0s2aMle2TEyMSh224w_C3_D_0AL9hoqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484114804</pqid></control><display><type>article</type><title>Rail Detection Based on LSD and the Least Square Curve Fitting</title><source>Alma/SFX Local Collection</source><creator>Zheng, Yun-Shui ; Jin, Yan-Wei ; Dong, Yu</creator><creatorcontrib>Zheng, Yun-Shui ; Jin, Yan-Wei ; Dong, Yu</creatorcontrib><description>It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not. A convenient and fast method based on line segment detector (LSD) and the least square curve fitting to identify the rail in the image is proposed in this paper. The image in front of the train can be obtained through the camera on-board. After preprocessing, it will be divided equally along the longitudinal axis. Utilizing the characteristics of the LSD algorithm, the edges are approximated into multiple line segments. After screening the terminals of the line segments, it can generate the mathematical model of the rail in the image based on the least square. Experiments show that the algorithm in this paper can fit the rail curve accurately and has good applicability and robustness.</description><identifier>ISSN: 1476-8186</identifier><identifier>EISSN: 1751-8520</identifier><identifier>DOI: 10.1007/s11633-020-1241-4</identifier><language>eng</language><publisher>Beijing: Institute of Automation, Chinese Academy of Sciences</publisher><subject>Algorithms ; CAE) and Design ; Computer Applications ; Computer-Aided Engineering (CAD ; Control ; Curve fitting ; Engineering ; Least squares ; Mechatronics ; Research Article ; Robotics ; Robustness (mathematics) ; Segments</subject><ispartof>International journal of automation and computing, 2021-02, Vol.18 (1), p.85-95</ispartof><rights>Institute of Automatinn, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Institute of Automatinn, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-fc088c8491ae27c326fffd6c19ae0bf64b809d3b9931a38fef9eabe2d03ee923</citedby><cites>FETCH-LOGICAL-c344t-fc088c8491ae27c326fffd6c19ae0bf64b809d3b9931a38fef9eabe2d03ee923</cites><orcidid>0000-0001-7971-2470 ; 0000-0002-7644-5482 ; 0000-0003-0961-2583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Yun-Shui</creatorcontrib><creatorcontrib>Jin, Yan-Wei</creatorcontrib><creatorcontrib>Dong, Yu</creatorcontrib><title>Rail Detection Based on LSD and the Least Square Curve Fitting</title><title>International journal of automation and computing</title><addtitle>Int. J. Autom. Comput</addtitle><description>It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not. A convenient and fast method based on line segment detector (LSD) and the least square curve fitting to identify the rail in the image is proposed in this paper. The image in front of the train can be obtained through the camera on-board. After preprocessing, it will be divided equally along the longitudinal axis. Utilizing the characteristics of the LSD algorithm, the edges are approximated into multiple line segments. After screening the terminals of the line segments, it can generate the mathematical model of the rail in the image based on the least square. Experiments show that the algorithm in this paper can fit the rail curve accurately and has good applicability and robustness.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Computer Applications</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Curve fitting</subject><subject>Engineering</subject><subject>Least squares</subject><subject>Mechatronics</subject><subject>Research Article</subject><subject>Robotics</subject><subject>Robustness (mathematics)</subject><subject>Segments</subject><issn>1476-8186</issn><issn>1751-8520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAUhYMoOKc_wLeAz9HcJGuTF0E3p0JBcHsPaXszO2a7Jangv7ejgk8-3fNwvnPhI-Qa-C1wnt9FgExKxgVnIBQwdUImkM-A6Zngp0NWecY06OycXMS45TzLhVETcv_umh1dYMIqNV1LH13Emg6hWC2oa2uaPpAW6GKiq0PvAtJ5H76QLpuUmnZzSc6820W8-r1Tsl4-recvrHh7fp0_FKySSiXmK651pZUBhyKvpMi893VWgXHIS5-pUnNTy9IYCU5qj96gK1HUXCIaIafkZpzdh-7QY0x22_WhHT5aobQCUJqroQVjqwpdjAG93Yfm04VvC9weLdnRkh0s2aMle2TEyMSh224w_C3_D_0AL9hoqg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zheng, Yun-Shui</creator><creator>Jin, Yan-Wei</creator><creator>Dong, Yu</creator><general>Institute of Automation, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-7971-2470</orcidid><orcidid>https://orcid.org/0000-0002-7644-5482</orcidid><orcidid>https://orcid.org/0000-0003-0961-2583</orcidid></search><sort><creationdate>20210201</creationdate><title>Rail Detection Based on LSD and the Least Square Curve Fitting</title><author>Zheng, Yun-Shui ; Jin, Yan-Wei ; Dong, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-fc088c8491ae27c326fffd6c19ae0bf64b809d3b9931a38fef9eabe2d03ee923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Computer Applications</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Curve fitting</topic><topic>Engineering</topic><topic>Least squares</topic><topic>Mechatronics</topic><topic>Research Article</topic><topic>Robotics</topic><topic>Robustness (mathematics)</topic><topic>Segments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yun-Shui</creatorcontrib><creatorcontrib>Jin, Yan-Wei</creatorcontrib><creatorcontrib>Dong, Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of automation and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yun-Shui</au><au>Jin, Yan-Wei</au><au>Dong, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rail Detection Based on LSD and the Least Square Curve Fitting</atitle><jtitle>International journal of automation and computing</jtitle><stitle>Int. J. Autom. Comput</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>18</volume><issue>1</issue><spage>85</spage><epage>95</epage><pages>85-95</pages><issn>1476-8186</issn><eissn>1751-8520</eissn><abstract>It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not. A convenient and fast method based on line segment detector (LSD) and the least square curve fitting to identify the rail in the image is proposed in this paper. The image in front of the train can be obtained through the camera on-board. After preprocessing, it will be divided equally along the longitudinal axis. Utilizing the characteristics of the LSD algorithm, the edges are approximated into multiple line segments. After screening the terminals of the line segments, it can generate the mathematical model of the rail in the image based on the least square. Experiments show that the algorithm in this paper can fit the rail curve accurately and has good applicability and robustness.</abstract><cop>Beijing</cop><pub>Institute of Automation, Chinese Academy of Sciences</pub><doi>10.1007/s11633-020-1241-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7971-2470</orcidid><orcidid>https://orcid.org/0000-0002-7644-5482</orcidid><orcidid>https://orcid.org/0000-0003-0961-2583</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-8186 |
ispartof | International journal of automation and computing, 2021-02, Vol.18 (1), p.85-95 |
issn | 1476-8186 1751-8520 |
language | eng |
recordid | cdi_proquest_journals_2484114804 |
source | Alma/SFX Local Collection |
subjects | Algorithms CAE) and Design Computer Applications Computer-Aided Engineering (CAD Control Curve fitting Engineering Least squares Mechatronics Research Article Robotics Robustness (mathematics) Segments |
title | Rail Detection Based on LSD and the Least Square Curve Fitting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rail%20Detection%20Based%20on%20LSD%20and%20the%20Least%20Square%20Curve%20Fitting&rft.jtitle=International%20journal%20of%20automation%20and%20computing&rft.au=Zheng,%20Yun-Shui&rft.date=2021-02-01&rft.volume=18&rft.issue=1&rft.spage=85&rft.epage=95&rft.pages=85-95&rft.issn=1476-8186&rft.eissn=1751-8520&rft_id=info:doi/10.1007/s11633-020-1241-4&rft_dat=%3Cproquest_cross%3E2484114804%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-fc088c8491ae27c326fffd6c19ae0bf64b809d3b9931a38fef9eabe2d03ee923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2484114804&rft_id=info:pmid/&rfr_iscdi=true |