Loading…

Rail Detection Based on LSD and the Least Square Curve Fitting

It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not. A convenient and fast method based on line segment detector (LSD) and the least square curve fitting to identify the rail in the image is proposed in this paper. The...

Full description

Saved in:
Bibliographic Details
Published in:International journal of automation and computing 2021-02, Vol.18 (1), p.85-95
Main Authors: Zheng, Yun-Shui, Jin, Yan-Wei, Dong, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-fc088c8491ae27c326fffd6c19ae0bf64b809d3b9931a38fef9eabe2d03ee923
cites cdi_FETCH-LOGICAL-c344t-fc088c8491ae27c326fffd6c19ae0bf64b809d3b9931a38fef9eabe2d03ee923
container_end_page 95
container_issue 1
container_start_page 85
container_title International journal of automation and computing
container_volume 18
creator Zheng, Yun-Shui
Jin, Yan-Wei
Dong, Yu
description It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not. A convenient and fast method based on line segment detector (LSD) and the least square curve fitting to identify the rail in the image is proposed in this paper. The image in front of the train can be obtained through the camera on-board. After preprocessing, it will be divided equally along the longitudinal axis. Utilizing the characteristics of the LSD algorithm, the edges are approximated into multiple line segments. After screening the terminals of the line segments, it can generate the mathematical model of the rail in the image based on the least square. Experiments show that the algorithm in this paper can fit the rail curve accurately and has good applicability and robustness.
doi_str_mv 10.1007/s11633-020-1241-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484114804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484114804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-fc088c8491ae27c326fffd6c19ae0bf64b809d3b9931a38fef9eabe2d03ee923</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLeAz9HcJGuTF0E3p0JBcHsPaXszO2a7Jangv7ejgk8-3fNwvnPhI-Qa-C1wnt9FgExKxgVnIBQwdUImkM-A6Zngp0NWecY06OycXMS45TzLhVETcv_umh1dYMIqNV1LH13Emg6hWC2oa2uaPpAW6GKiq0PvAtJ5H76QLpuUmnZzSc6820W8-r1Tsl4-recvrHh7fp0_FKySSiXmK651pZUBhyKvpMi893VWgXHIS5-pUnNTy9IYCU5qj96gK1HUXCIaIafkZpzdh-7QY0x22_WhHT5aobQCUJqroQVjqwpdjAG93Yfm04VvC9weLdnRkh0s2aMle2TEyMSh224w_C3_D_0AL9hoqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484114804</pqid></control><display><type>article</type><title>Rail Detection Based on LSD and the Least Square Curve Fitting</title><source>Alma/SFX Local Collection</source><creator>Zheng, Yun-Shui ; Jin, Yan-Wei ; Dong, Yu</creator><creatorcontrib>Zheng, Yun-Shui ; Jin, Yan-Wei ; Dong, Yu</creatorcontrib><description>It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not. A convenient and fast method based on line segment detector (LSD) and the least square curve fitting to identify the rail in the image is proposed in this paper. The image in front of the train can be obtained through the camera on-board. After preprocessing, it will be divided equally along the longitudinal axis. Utilizing the characteristics of the LSD algorithm, the edges are approximated into multiple line segments. After screening the terminals of the line segments, it can generate the mathematical model of the rail in the image based on the least square. Experiments show that the algorithm in this paper can fit the rail curve accurately and has good applicability and robustness.</description><identifier>ISSN: 1476-8186</identifier><identifier>EISSN: 1751-8520</identifier><identifier>DOI: 10.1007/s11633-020-1241-4</identifier><language>eng</language><publisher>Beijing: Institute of Automation, Chinese Academy of Sciences</publisher><subject>Algorithms ; CAE) and Design ; Computer Applications ; Computer-Aided Engineering (CAD ; Control ; Curve fitting ; Engineering ; Least squares ; Mechatronics ; Research Article ; Robotics ; Robustness (mathematics) ; Segments</subject><ispartof>International journal of automation and computing, 2021-02, Vol.18 (1), p.85-95</ispartof><rights>Institute of Automatinn, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Institute of Automatinn, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-fc088c8491ae27c326fffd6c19ae0bf64b809d3b9931a38fef9eabe2d03ee923</citedby><cites>FETCH-LOGICAL-c344t-fc088c8491ae27c326fffd6c19ae0bf64b809d3b9931a38fef9eabe2d03ee923</cites><orcidid>0000-0001-7971-2470 ; 0000-0002-7644-5482 ; 0000-0003-0961-2583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Yun-Shui</creatorcontrib><creatorcontrib>Jin, Yan-Wei</creatorcontrib><creatorcontrib>Dong, Yu</creatorcontrib><title>Rail Detection Based on LSD and the Least Square Curve Fitting</title><title>International journal of automation and computing</title><addtitle>Int. J. Autom. Comput</addtitle><description>It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not. A convenient and fast method based on line segment detector (LSD) and the least square curve fitting to identify the rail in the image is proposed in this paper. The image in front of the train can be obtained through the camera on-board. After preprocessing, it will be divided equally along the longitudinal axis. Utilizing the characteristics of the LSD algorithm, the edges are approximated into multiple line segments. After screening the terminals of the line segments, it can generate the mathematical model of the rail in the image based on the least square. Experiments show that the algorithm in this paper can fit the rail curve accurately and has good applicability and robustness.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Computer Applications</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Curve fitting</subject><subject>Engineering</subject><subject>Least squares</subject><subject>Mechatronics</subject><subject>Research Article</subject><subject>Robotics</subject><subject>Robustness (mathematics)</subject><subject>Segments</subject><issn>1476-8186</issn><issn>1751-8520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAUhYMoOKc_wLeAz9HcJGuTF0E3p0JBcHsPaXszO2a7Jangv7ejgk8-3fNwvnPhI-Qa-C1wnt9FgExKxgVnIBQwdUImkM-A6Zngp0NWecY06OycXMS45TzLhVETcv_umh1dYMIqNV1LH13Emg6hWC2oa2uaPpAW6GKiq0PvAtJ5H76QLpuUmnZzSc6820W8-r1Tsl4-recvrHh7fp0_FKySSiXmK651pZUBhyKvpMi893VWgXHIS5-pUnNTy9IYCU5qj96gK1HUXCIaIafkZpzdh-7QY0x22_WhHT5aobQCUJqroQVjqwpdjAG93Yfm04VvC9weLdnRkh0s2aMle2TEyMSh224w_C3_D_0AL9hoqg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zheng, Yun-Shui</creator><creator>Jin, Yan-Wei</creator><creator>Dong, Yu</creator><general>Institute of Automation, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-7971-2470</orcidid><orcidid>https://orcid.org/0000-0002-7644-5482</orcidid><orcidid>https://orcid.org/0000-0003-0961-2583</orcidid></search><sort><creationdate>20210201</creationdate><title>Rail Detection Based on LSD and the Least Square Curve Fitting</title><author>Zheng, Yun-Shui ; Jin, Yan-Wei ; Dong, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-fc088c8491ae27c326fffd6c19ae0bf64b809d3b9931a38fef9eabe2d03ee923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Computer Applications</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Curve fitting</topic><topic>Engineering</topic><topic>Least squares</topic><topic>Mechatronics</topic><topic>Research Article</topic><topic>Robotics</topic><topic>Robustness (mathematics)</topic><topic>Segments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yun-Shui</creatorcontrib><creatorcontrib>Jin, Yan-Wei</creatorcontrib><creatorcontrib>Dong, Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of automation and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yun-Shui</au><au>Jin, Yan-Wei</au><au>Dong, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rail Detection Based on LSD and the Least Square Curve Fitting</atitle><jtitle>International journal of automation and computing</jtitle><stitle>Int. J. Autom. Comput</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>18</volume><issue>1</issue><spage>85</spage><epage>95</epage><pages>85-95</pages><issn>1476-8186</issn><eissn>1751-8520</eissn><abstract>It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not. A convenient and fast method based on line segment detector (LSD) and the least square curve fitting to identify the rail in the image is proposed in this paper. The image in front of the train can be obtained through the camera on-board. After preprocessing, it will be divided equally along the longitudinal axis. Utilizing the characteristics of the LSD algorithm, the edges are approximated into multiple line segments. After screening the terminals of the line segments, it can generate the mathematical model of the rail in the image based on the least square. Experiments show that the algorithm in this paper can fit the rail curve accurately and has good applicability and robustness.</abstract><cop>Beijing</cop><pub>Institute of Automation, Chinese Academy of Sciences</pub><doi>10.1007/s11633-020-1241-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7971-2470</orcidid><orcidid>https://orcid.org/0000-0002-7644-5482</orcidid><orcidid>https://orcid.org/0000-0003-0961-2583</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-8186
ispartof International journal of automation and computing, 2021-02, Vol.18 (1), p.85-95
issn 1476-8186
1751-8520
language eng
recordid cdi_proquest_journals_2484114804
source Alma/SFX Local Collection
subjects Algorithms
CAE) and Design
Computer Applications
Computer-Aided Engineering (CAD
Control
Curve fitting
Engineering
Least squares
Mechatronics
Research Article
Robotics
Robustness (mathematics)
Segments
title Rail Detection Based on LSD and the Least Square Curve Fitting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rail%20Detection%20Based%20on%20LSD%20and%20the%20Least%20Square%20Curve%20Fitting&rft.jtitle=International%20journal%20of%20automation%20and%20computing&rft.au=Zheng,%20Yun-Shui&rft.date=2021-02-01&rft.volume=18&rft.issue=1&rft.spage=85&rft.epage=95&rft.pages=85-95&rft.issn=1476-8186&rft.eissn=1751-8520&rft_id=info:doi/10.1007/s11633-020-1241-4&rft_dat=%3Cproquest_cross%3E2484114804%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-fc088c8491ae27c326fffd6c19ae0bf64b809d3b9931a38fef9eabe2d03ee923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2484114804&rft_id=info:pmid/&rfr_iscdi=true