Loading…
Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy
We present a stochastic individual-based model for the phenotypic evolution of cancer cell populations under chemotherapy. In particular, we consider the case of combination cancer therapy whereby a chemotherapeutic agent is administered as the primary treatment and an epigenetic drug is used as an...
Saved in:
Published in: | Mathematical modelling of natural phenomena 2020, Vol.15, p.14 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c301t-36515794286c91a3773366d8f20e789e51611c63568dd185b7fd6d4ab064a52d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c301t-36515794286c91a3773366d8f20e789e51611c63568dd185b7fd6d4ab064a52d3 |
container_end_page | |
container_issue | |
container_start_page | 14 |
container_title | Mathematical modelling of natural phenomena |
container_volume | 15 |
creator | Stace, Rebecca E.A. Stiehl, Thomas Chaplain, Mark A.J. Marciniak-Czochra, Anna Lorenzi, Tommaso |
description | We present a stochastic individual-based model for the phenotypic evolution of cancer cell populations under chemotherapy. In particular, we consider the case of combination cancer therapy whereby a chemotherapeutic agent is administered as the primary treatment and an epigenetic drug is used as an adjuvant treatment. The cell population is structured by the expression level of a gene that controls cell proliferation and chemoresistance. In order to obtain an analytical description of evolutionary dynamics, we formally derive a deterministic continuum counterpart of this discrete model, which is given by a nonlocal parabolic equation for the cell population density function. Integrating computational simulations of the individual-based model with analysis of the corresponding continuum model, we perform a complete exploration of the model parameter space. We show that harsher environmental conditions and higher probabilities of spontaneous epimutation can lead to more effective chemotherapy, and we demonstrate the existence of an inverse relationship between the efficacy of the epigenetic drug and the probability of spontaneous epimutation. Taken together, the outcomes of the model provide theoretical ground for the development of anticancer protocols that use lower concentrations of chemotherapeutic agents in combination with epigenetic drugs capable of promoting the re-expression of epigenetically regulated genes. |
doi_str_mv | 10.1051/mmnp/2019027 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484282339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484282339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-36515794286c91a3773366d8f20e789e51611c63568dd185b7fd6d4ab064a52d3</originalsourceid><addsrcrecordid>eNotkMlqwzAQhkVpoSHNrQ8g6LVuNJYl2ceSrhDopT0bRRqTBFtytRTy9rVJ5jIw8y_wEXIP7AmYgPUwuHFdMmhYqa7IApRkhQQG12TBGsULwav6lqxiPLJpOFScsQUJL4doAiak2llqvEsHl_NAxz06n04jFjGFbFIOaOngLfaRdj7QtEeKf77P6eAd9R012hkM1GDf09GPudfzJ9Ls7Hze4-AnT9Dj6Y7cdLqPuLrsJfl5e_3efBTbr_fPzfO2MJxBKrgUIFRTlbU0DWiuFOdS2rorGaq6QQESwEguZG0t1GKnOittpXdMVlqUli_Jwzl3DP43Y0zt0efgpsq2rOopt-S8mVSPZ5UJPsaAXTuGw6DDqQXWzmDbGWx7Acv_ARn0bQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484282339</pqid></control><display><type>article</type><title>Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy</title><source>EZB Electronic Journals Library</source><creator>Stace, Rebecca E.A. ; Stiehl, Thomas ; Chaplain, Mark A.J. ; Marciniak-Czochra, Anna ; Lorenzi, Tommaso</creator><contributor>Hubert, Florence</contributor><creatorcontrib>Stace, Rebecca E.A. ; Stiehl, Thomas ; Chaplain, Mark A.J. ; Marciniak-Czochra, Anna ; Lorenzi, Tommaso ; Hubert, Florence</creatorcontrib><description>We present a stochastic individual-based model for the phenotypic evolution of cancer cell populations under chemotherapy. In particular, we consider the case of combination cancer therapy whereby a chemotherapeutic agent is administered as the primary treatment and an epigenetic drug is used as an adjuvant treatment. The cell population is structured by the expression level of a gene that controls cell proliferation and chemoresistance. In order to obtain an analytical description of evolutionary dynamics, we formally derive a deterministic continuum counterpart of this discrete model, which is given by a nonlocal parabolic equation for the cell population density function. Integrating computational simulations of the individual-based model with analysis of the corresponding continuum model, we perform a complete exploration of the model parameter space. We show that harsher environmental conditions and higher probabilities of spontaneous epimutation can lead to more effective chemotherapy, and we demonstrate the existence of an inverse relationship between the efficacy of the epigenetic drug and the probability of spontaneous epimutation. Taken together, the outcomes of the model provide theoretical ground for the development of anticancer protocols that use lower concentrations of chemotherapeutic agents in combination with epigenetic drugs capable of promoting the re-expression of epigenetically regulated genes.</description><identifier>ISSN: 0973-5348</identifier><identifier>EISSN: 1760-6101</identifier><identifier>DOI: 10.1051/mmnp/2019027</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Cancer ; Cancer therapies ; Cell proliferation ; Chemoresistance ; Chemotherapy ; Computer applications ; Continuum modeling ; Environmental conditions ; Epigenetics ; Evolution ; Evolution & development ; Gene expression ; Phenotypes ; Population density</subject><ispartof>Mathematical modelling of natural phenomena, 2020, Vol.15, p.14</ispartof><rights>2020. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.mmnp-journal.org/articles/mmnp/abs/2020/01/mmnp190018/mmnp190018.html .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-36515794286c91a3773366d8f20e789e51611c63568dd185b7fd6d4ab064a52d3</citedby><cites>FETCH-LOGICAL-c301t-36515794286c91a3773366d8f20e789e51611c63568dd185b7fd6d4ab064a52d3</cites><orcidid>0000-0001-9165-1666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27902,27903,27904</link.rule.ids></links><search><contributor>Hubert, Florence</contributor><creatorcontrib>Stace, Rebecca E.A.</creatorcontrib><creatorcontrib>Stiehl, Thomas</creatorcontrib><creatorcontrib>Chaplain, Mark A.J.</creatorcontrib><creatorcontrib>Marciniak-Czochra, Anna</creatorcontrib><creatorcontrib>Lorenzi, Tommaso</creatorcontrib><title>Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy</title><title>Mathematical modelling of natural phenomena</title><description>We present a stochastic individual-based model for the phenotypic evolution of cancer cell populations under chemotherapy. In particular, we consider the case of combination cancer therapy whereby a chemotherapeutic agent is administered as the primary treatment and an epigenetic drug is used as an adjuvant treatment. The cell population is structured by the expression level of a gene that controls cell proliferation and chemoresistance. In order to obtain an analytical description of evolutionary dynamics, we formally derive a deterministic continuum counterpart of this discrete model, which is given by a nonlocal parabolic equation for the cell population density function. Integrating computational simulations of the individual-based model with analysis of the corresponding continuum model, we perform a complete exploration of the model parameter space. We show that harsher environmental conditions and higher probabilities of spontaneous epimutation can lead to more effective chemotherapy, and we demonstrate the existence of an inverse relationship between the efficacy of the epigenetic drug and the probability of spontaneous epimutation. Taken together, the outcomes of the model provide theoretical ground for the development of anticancer protocols that use lower concentrations of chemotherapeutic agents in combination with epigenetic drugs capable of promoting the re-expression of epigenetically regulated genes.</description><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cell proliferation</subject><subject>Chemoresistance</subject><subject>Chemotherapy</subject><subject>Computer applications</subject><subject>Continuum modeling</subject><subject>Environmental conditions</subject><subject>Epigenetics</subject><subject>Evolution</subject><subject>Evolution & development</subject><subject>Gene expression</subject><subject>Phenotypes</subject><subject>Population density</subject><issn>0973-5348</issn><issn>1760-6101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkMlqwzAQhkVpoSHNrQ8g6LVuNJYl2ceSrhDopT0bRRqTBFtytRTy9rVJ5jIw8y_wEXIP7AmYgPUwuHFdMmhYqa7IApRkhQQG12TBGsULwav6lqxiPLJpOFScsQUJL4doAiak2llqvEsHl_NAxz06n04jFjGFbFIOaOngLfaRdj7QtEeKf77P6eAd9R012hkM1GDf09GPudfzJ9Ls7Hze4-AnT9Dj6Y7cdLqPuLrsJfl5e_3efBTbr_fPzfO2MJxBKrgUIFRTlbU0DWiuFOdS2rorGaq6QQESwEguZG0t1GKnOittpXdMVlqUli_Jwzl3DP43Y0zt0efgpsq2rOopt-S8mVSPZ5UJPsaAXTuGw6DDqQXWzmDbGWx7Acv_ARn0bQw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Stace, Rebecca E.A.</creator><creator>Stiehl, Thomas</creator><creator>Chaplain, Mark A.J.</creator><creator>Marciniak-Czochra, Anna</creator><creator>Lorenzi, Tommaso</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9165-1666</orcidid></search><sort><creationdate>2020</creationdate><title>Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy</title><author>Stace, Rebecca E.A. ; Stiehl, Thomas ; Chaplain, Mark A.J. ; Marciniak-Czochra, Anna ; Lorenzi, Tommaso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-36515794286c91a3773366d8f20e789e51611c63568dd185b7fd6d4ab064a52d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cell proliferation</topic><topic>Chemoresistance</topic><topic>Chemotherapy</topic><topic>Computer applications</topic><topic>Continuum modeling</topic><topic>Environmental conditions</topic><topic>Epigenetics</topic><topic>Evolution</topic><topic>Evolution & development</topic><topic>Gene expression</topic><topic>Phenotypes</topic><topic>Population density</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stace, Rebecca E.A.</creatorcontrib><creatorcontrib>Stiehl, Thomas</creatorcontrib><creatorcontrib>Chaplain, Mark A.J.</creatorcontrib><creatorcontrib>Marciniak-Czochra, Anna</creatorcontrib><creatorcontrib>Lorenzi, Tommaso</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical modelling of natural phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stace, Rebecca E.A.</au><au>Stiehl, Thomas</au><au>Chaplain, Mark A.J.</au><au>Marciniak-Czochra, Anna</au><au>Lorenzi, Tommaso</au><au>Hubert, Florence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy</atitle><jtitle>Mathematical modelling of natural phenomena</jtitle><date>2020</date><risdate>2020</risdate><volume>15</volume><spage>14</spage><pages>14-</pages><issn>0973-5348</issn><eissn>1760-6101</eissn><abstract>We present a stochastic individual-based model for the phenotypic evolution of cancer cell populations under chemotherapy. In particular, we consider the case of combination cancer therapy whereby a chemotherapeutic agent is administered as the primary treatment and an epigenetic drug is used as an adjuvant treatment. The cell population is structured by the expression level of a gene that controls cell proliferation and chemoresistance. In order to obtain an analytical description of evolutionary dynamics, we formally derive a deterministic continuum counterpart of this discrete model, which is given by a nonlocal parabolic equation for the cell population density function. Integrating computational simulations of the individual-based model with analysis of the corresponding continuum model, we perform a complete exploration of the model parameter space. We show that harsher environmental conditions and higher probabilities of spontaneous epimutation can lead to more effective chemotherapy, and we demonstrate the existence of an inverse relationship between the efficacy of the epigenetic drug and the probability of spontaneous epimutation. Taken together, the outcomes of the model provide theoretical ground for the development of anticancer protocols that use lower concentrations of chemotherapeutic agents in combination with epigenetic drugs capable of promoting the re-expression of epigenetically regulated genes.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/mmnp/2019027</doi><orcidid>https://orcid.org/0000-0001-9165-1666</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-5348 |
ispartof | Mathematical modelling of natural phenomena, 2020, Vol.15, p.14 |
issn | 0973-5348 1760-6101 |
language | eng |
recordid | cdi_proquest_journals_2484282339 |
source | EZB Electronic Journals Library |
subjects | Cancer Cancer therapies Cell proliferation Chemoresistance Chemotherapy Computer applications Continuum modeling Environmental conditions Epigenetics Evolution Evolution & development Gene expression Phenotypes Population density |
title | Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20and%20continuum%20phenotype-structured%20models%20for%20the%20evolution%20of%20cancer%20cell%20populations%20under%20chemotherapy&rft.jtitle=Mathematical%20modelling%20of%20natural%20phenomena&rft.au=Stace,%20Rebecca%20E.A.&rft.date=2020&rft.volume=15&rft.spage=14&rft.pages=14-&rft.issn=0973-5348&rft.eissn=1760-6101&rft_id=info:doi/10.1051/mmnp/2019027&rft_dat=%3Cproquest_cross%3E2484282339%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-36515794286c91a3773366d8f20e789e51611c63568dd185b7fd6d4ab064a52d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2484282339&rft_id=info:pmid/&rfr_iscdi=true |