Loading…

Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy

We present a stochastic individual-based model for the phenotypic evolution of cancer cell populations under chemotherapy. In particular, we consider the case of combination cancer therapy whereby a chemotherapeutic agent is administered as the primary treatment and an epigenetic drug is used as an...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical modelling of natural phenomena 2020, Vol.15, p.14
Main Authors: Stace, Rebecca E.A., Stiehl, Thomas, Chaplain, Mark A.J., Marciniak-Czochra, Anna, Lorenzi, Tommaso
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c301t-36515794286c91a3773366d8f20e789e51611c63568dd185b7fd6d4ab064a52d3
cites cdi_FETCH-LOGICAL-c301t-36515794286c91a3773366d8f20e789e51611c63568dd185b7fd6d4ab064a52d3
container_end_page
container_issue
container_start_page 14
container_title Mathematical modelling of natural phenomena
container_volume 15
creator Stace, Rebecca E.A.
Stiehl, Thomas
Chaplain, Mark A.J.
Marciniak-Czochra, Anna
Lorenzi, Tommaso
description We present a stochastic individual-based model for the phenotypic evolution of cancer cell populations under chemotherapy. In particular, we consider the case of combination cancer therapy whereby a chemotherapeutic agent is administered as the primary treatment and an epigenetic drug is used as an adjuvant treatment. The cell population is structured by the expression level of a gene that controls cell proliferation and chemoresistance. In order to obtain an analytical description of evolutionary dynamics, we formally derive a deterministic continuum counterpart of this discrete model, which is given by a nonlocal parabolic equation for the cell population density function. Integrating computational simulations of the individual-based model with analysis of the corresponding continuum model, we perform a complete exploration of the model parameter space. We show that harsher environmental conditions and higher probabilities of spontaneous epimutation can lead to more effective chemotherapy, and we demonstrate the existence of an inverse relationship between the efficacy of the epigenetic drug and the probability of spontaneous epimutation. Taken together, the outcomes of the model provide theoretical ground for the development of anticancer protocols that use lower concentrations of chemotherapeutic agents in combination with epigenetic drugs capable of promoting the re-expression of epigenetically regulated genes.
doi_str_mv 10.1051/mmnp/2019027
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484282339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484282339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-36515794286c91a3773366d8f20e789e51611c63568dd185b7fd6d4ab064a52d3</originalsourceid><addsrcrecordid>eNotkMlqwzAQhkVpoSHNrQ8g6LVuNJYl2ceSrhDopT0bRRqTBFtytRTy9rVJ5jIw8y_wEXIP7AmYgPUwuHFdMmhYqa7IApRkhQQG12TBGsULwav6lqxiPLJpOFScsQUJL4doAiak2llqvEsHl_NAxz06n04jFjGFbFIOaOngLfaRdj7QtEeKf77P6eAd9R012hkM1GDf09GPudfzJ9Ls7Hze4-AnT9Dj6Y7cdLqPuLrsJfl5e_3efBTbr_fPzfO2MJxBKrgUIFRTlbU0DWiuFOdS2rorGaq6QQESwEguZG0t1GKnOittpXdMVlqUli_Jwzl3DP43Y0zt0efgpsq2rOopt-S8mVSPZ5UJPsaAXTuGw6DDqQXWzmDbGWx7Acv_ARn0bQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484282339</pqid></control><display><type>article</type><title>Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy</title><source>EZB Electronic Journals Library</source><creator>Stace, Rebecca E.A. ; Stiehl, Thomas ; Chaplain, Mark A.J. ; Marciniak-Czochra, Anna ; Lorenzi, Tommaso</creator><contributor>Hubert, Florence</contributor><creatorcontrib>Stace, Rebecca E.A. ; Stiehl, Thomas ; Chaplain, Mark A.J. ; Marciniak-Czochra, Anna ; Lorenzi, Tommaso ; Hubert, Florence</creatorcontrib><description>We present a stochastic individual-based model for the phenotypic evolution of cancer cell populations under chemotherapy. In particular, we consider the case of combination cancer therapy whereby a chemotherapeutic agent is administered as the primary treatment and an epigenetic drug is used as an adjuvant treatment. The cell population is structured by the expression level of a gene that controls cell proliferation and chemoresistance. In order to obtain an analytical description of evolutionary dynamics, we formally derive a deterministic continuum counterpart of this discrete model, which is given by a nonlocal parabolic equation for the cell population density function. Integrating computational simulations of the individual-based model with analysis of the corresponding continuum model, we perform a complete exploration of the model parameter space. We show that harsher environmental conditions and higher probabilities of spontaneous epimutation can lead to more effective chemotherapy, and we demonstrate the existence of an inverse relationship between the efficacy of the epigenetic drug and the probability of spontaneous epimutation. Taken together, the outcomes of the model provide theoretical ground for the development of anticancer protocols that use lower concentrations of chemotherapeutic agents in combination with epigenetic drugs capable of promoting the re-expression of epigenetically regulated genes.</description><identifier>ISSN: 0973-5348</identifier><identifier>EISSN: 1760-6101</identifier><identifier>DOI: 10.1051/mmnp/2019027</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Cancer ; Cancer therapies ; Cell proliferation ; Chemoresistance ; Chemotherapy ; Computer applications ; Continuum modeling ; Environmental conditions ; Epigenetics ; Evolution ; Evolution &amp; development ; Gene expression ; Phenotypes ; Population density</subject><ispartof>Mathematical modelling of natural phenomena, 2020, Vol.15, p.14</ispartof><rights>2020. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.mmnp-journal.org/articles/mmnp/abs/2020/01/mmnp190018/mmnp190018.html .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-36515794286c91a3773366d8f20e789e51611c63568dd185b7fd6d4ab064a52d3</citedby><cites>FETCH-LOGICAL-c301t-36515794286c91a3773366d8f20e789e51611c63568dd185b7fd6d4ab064a52d3</cites><orcidid>0000-0001-9165-1666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27902,27903,27904</link.rule.ids></links><search><contributor>Hubert, Florence</contributor><creatorcontrib>Stace, Rebecca E.A.</creatorcontrib><creatorcontrib>Stiehl, Thomas</creatorcontrib><creatorcontrib>Chaplain, Mark A.J.</creatorcontrib><creatorcontrib>Marciniak-Czochra, Anna</creatorcontrib><creatorcontrib>Lorenzi, Tommaso</creatorcontrib><title>Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy</title><title>Mathematical modelling of natural phenomena</title><description>We present a stochastic individual-based model for the phenotypic evolution of cancer cell populations under chemotherapy. In particular, we consider the case of combination cancer therapy whereby a chemotherapeutic agent is administered as the primary treatment and an epigenetic drug is used as an adjuvant treatment. The cell population is structured by the expression level of a gene that controls cell proliferation and chemoresistance. In order to obtain an analytical description of evolutionary dynamics, we formally derive a deterministic continuum counterpart of this discrete model, which is given by a nonlocal parabolic equation for the cell population density function. Integrating computational simulations of the individual-based model with analysis of the corresponding continuum model, we perform a complete exploration of the model parameter space. We show that harsher environmental conditions and higher probabilities of spontaneous epimutation can lead to more effective chemotherapy, and we demonstrate the existence of an inverse relationship between the efficacy of the epigenetic drug and the probability of spontaneous epimutation. Taken together, the outcomes of the model provide theoretical ground for the development of anticancer protocols that use lower concentrations of chemotherapeutic agents in combination with epigenetic drugs capable of promoting the re-expression of epigenetically regulated genes.</description><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cell proliferation</subject><subject>Chemoresistance</subject><subject>Chemotherapy</subject><subject>Computer applications</subject><subject>Continuum modeling</subject><subject>Environmental conditions</subject><subject>Epigenetics</subject><subject>Evolution</subject><subject>Evolution &amp; development</subject><subject>Gene expression</subject><subject>Phenotypes</subject><subject>Population density</subject><issn>0973-5348</issn><issn>1760-6101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkMlqwzAQhkVpoSHNrQ8g6LVuNJYl2ceSrhDopT0bRRqTBFtytRTy9rVJ5jIw8y_wEXIP7AmYgPUwuHFdMmhYqa7IApRkhQQG12TBGsULwav6lqxiPLJpOFScsQUJL4doAiak2llqvEsHl_NAxz06n04jFjGFbFIOaOngLfaRdj7QtEeKf77P6eAd9R012hkM1GDf09GPudfzJ9Ls7Hze4-AnT9Dj6Y7cdLqPuLrsJfl5e_3efBTbr_fPzfO2MJxBKrgUIFRTlbU0DWiuFOdS2rorGaq6QQESwEguZG0t1GKnOittpXdMVlqUli_Jwzl3DP43Y0zt0efgpsq2rOopt-S8mVSPZ5UJPsaAXTuGw6DDqQXWzmDbGWx7Acv_ARn0bQw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Stace, Rebecca E.A.</creator><creator>Stiehl, Thomas</creator><creator>Chaplain, Mark A.J.</creator><creator>Marciniak-Czochra, Anna</creator><creator>Lorenzi, Tommaso</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9165-1666</orcidid></search><sort><creationdate>2020</creationdate><title>Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy</title><author>Stace, Rebecca E.A. ; Stiehl, Thomas ; Chaplain, Mark A.J. ; Marciniak-Czochra, Anna ; Lorenzi, Tommaso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-36515794286c91a3773366d8f20e789e51611c63568dd185b7fd6d4ab064a52d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cell proliferation</topic><topic>Chemoresistance</topic><topic>Chemotherapy</topic><topic>Computer applications</topic><topic>Continuum modeling</topic><topic>Environmental conditions</topic><topic>Epigenetics</topic><topic>Evolution</topic><topic>Evolution &amp; development</topic><topic>Gene expression</topic><topic>Phenotypes</topic><topic>Population density</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stace, Rebecca E.A.</creatorcontrib><creatorcontrib>Stiehl, Thomas</creatorcontrib><creatorcontrib>Chaplain, Mark A.J.</creatorcontrib><creatorcontrib>Marciniak-Czochra, Anna</creatorcontrib><creatorcontrib>Lorenzi, Tommaso</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical modelling of natural phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stace, Rebecca E.A.</au><au>Stiehl, Thomas</au><au>Chaplain, Mark A.J.</au><au>Marciniak-Czochra, Anna</au><au>Lorenzi, Tommaso</au><au>Hubert, Florence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy</atitle><jtitle>Mathematical modelling of natural phenomena</jtitle><date>2020</date><risdate>2020</risdate><volume>15</volume><spage>14</spage><pages>14-</pages><issn>0973-5348</issn><eissn>1760-6101</eissn><abstract>We present a stochastic individual-based model for the phenotypic evolution of cancer cell populations under chemotherapy. In particular, we consider the case of combination cancer therapy whereby a chemotherapeutic agent is administered as the primary treatment and an epigenetic drug is used as an adjuvant treatment. The cell population is structured by the expression level of a gene that controls cell proliferation and chemoresistance. In order to obtain an analytical description of evolutionary dynamics, we formally derive a deterministic continuum counterpart of this discrete model, which is given by a nonlocal parabolic equation for the cell population density function. Integrating computational simulations of the individual-based model with analysis of the corresponding continuum model, we perform a complete exploration of the model parameter space. We show that harsher environmental conditions and higher probabilities of spontaneous epimutation can lead to more effective chemotherapy, and we demonstrate the existence of an inverse relationship between the efficacy of the epigenetic drug and the probability of spontaneous epimutation. Taken together, the outcomes of the model provide theoretical ground for the development of anticancer protocols that use lower concentrations of chemotherapeutic agents in combination with epigenetic drugs capable of promoting the re-expression of epigenetically regulated genes.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/mmnp/2019027</doi><orcidid>https://orcid.org/0000-0001-9165-1666</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0973-5348
ispartof Mathematical modelling of natural phenomena, 2020, Vol.15, p.14
issn 0973-5348
1760-6101
language eng
recordid cdi_proquest_journals_2484282339
source EZB Electronic Journals Library
subjects Cancer
Cancer therapies
Cell proliferation
Chemoresistance
Chemotherapy
Computer applications
Continuum modeling
Environmental conditions
Epigenetics
Evolution
Evolution & development
Gene expression
Phenotypes
Population density
title Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20and%20continuum%20phenotype-structured%20models%20for%20the%20evolution%20of%20cancer%20cell%20populations%20under%20chemotherapy&rft.jtitle=Mathematical%20modelling%20of%20natural%20phenomena&rft.au=Stace,%20Rebecca%20E.A.&rft.date=2020&rft.volume=15&rft.spage=14&rft.pages=14-&rft.issn=0973-5348&rft.eissn=1760-6101&rft_id=info:doi/10.1051/mmnp/2019027&rft_dat=%3Cproquest_cross%3E2484282339%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-36515794286c91a3773366d8f20e789e51611c63568dd185b7fd6d4ab064a52d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2484282339&rft_id=info:pmid/&rfr_iscdi=true