Loading…

SwCS: Section-wise Content Similarity Approach to Exploit Scientific Big Data

The growing collection of scientific data in various web repositories is referred to as Scientific Big Data, as it fulfills the four “V’s” of Big Data–-volume, variety, velocity, and veracity. This phenomenon has created new opportunities for startups; for instance, the extraction of pertinent resea...

Full description

Saved in:
Bibliographic Details
Published in:Computers, materials & continua materials & continua, 2021, Vol.67 (1), p.877-894
Main Authors: Irshad, Kashif, Tanvir Afzal, Muhammad, Shahla Rizvi, Sanam, Shahid, Abdul, Riaz, Rabia, Chung, Tae-Sun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The growing collection of scientific data in various web repositories is referred to as Scientific Big Data, as it fulfills the four “V’s” of Big Data–-volume, variety, velocity, and veracity. This phenomenon has created new opportunities for startups; for instance, the extraction of pertinent research papers from enormous knowledge repositories using certain innovative methods has become an important task for researchers and entrepreneurs. Traditionally, the content of the papers are compared to list the relevant papers from a repository. The conventional method results in a long list of papers that is often impossible to interpret productively. Therefore, the need for a novel approach that intelligently utilizes the available data is imminent. Moreover, the primary element of the scientific knowledge base is a research article, which consists of various logical sections such as the Abstract, Introduction, Related Work, Methodology, Results, and Conclusion. Thus, this study utilizes these logical sections of research articles, because they hold significant potential in finding relevant papers. In this study, comprehensive experiments were performed to determine the role of the logical sections-based terms indexing method in improving the quality of results (i.e., retrieving relevant papers). Therefore, we proposed, implemented, and evaluated the logical sections-based content comparisons method to address the research objective with a standard method of indexing terms. The section-based approach outperformed the standard content-based approach in identifying relevant documents from all classified topics of computer science. Overall, the proposed approach extracted 14% more relevant results from the entire dataset. As the experimental results suggested that employing a finer content similarity technique improved the quality of results, the proposed approach has led the foundation of knowledge-based startups.
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2021.014156