Loading…
Randomising Realisability
We consider a randomised version of Kleene's realisability interpretation of intuitionistic arithmetic in which computability is replaced with randomised computability with positive probability. In particular, we show that (i) the set of randomly realisable statements is closed under intuitioni...
Saved in:
Published in: | arXiv.org 2021-01 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Merlin, Carl Galeotti, Lorenzo Passmann, Robert |
description | We consider a randomised version of Kleene's realisability interpretation of intuitionistic arithmetic in which computability is replaced with randomised computability with positive probability. In particular, we show that (i) the set of randomly realisable statements is closed under intuitionistic first-order logic, but (ii) different from the set of realisable statements, that (iii) "realisability with probability 1" is the same as realisability and (iv) that the axioms of bounded Heyting's arithmetic are randomly realisable, but some instances of the full induction scheme fail to be randomly realisable. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2484422340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484422340</sourcerecordid><originalsourceid>FETCH-proquest_journals_24844223403</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQDErMS8nPzSzOzEtXCEpNzMksTkzKzMksqeRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjEwsToOnGJgbGxKkCALgXKsk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484422340</pqid></control><display><type>article</type><title>Randomising Realisability</title><source>ProQuest - Publicly Available Content Database</source><creator>Merlin, Carl ; Galeotti, Lorenzo ; Passmann, Robert</creator><creatorcontrib>Merlin, Carl ; Galeotti, Lorenzo ; Passmann, Robert</creatorcontrib><description>We consider a randomised version of Kleene's realisability interpretation of intuitionistic arithmetic in which computability is replaced with randomised computability with positive probability. In particular, we show that (i) the set of randomly realisable statements is closed under intuitionistic first-order logic, but (ii) different from the set of realisable statements, that (iii) "realisability with probability 1" is the same as realisability and (iv) that the axioms of bounded Heyting's arithmetic are randomly realisable, but some instances of the full induction scheme fail to be randomly realisable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Arithmetic ; Axioms</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2484422340?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Merlin, Carl</creatorcontrib><creatorcontrib>Galeotti, Lorenzo</creatorcontrib><creatorcontrib>Passmann, Robert</creatorcontrib><title>Randomising Realisability</title><title>arXiv.org</title><description>We consider a randomised version of Kleene's realisability interpretation of intuitionistic arithmetic in which computability is replaced with randomised computability with positive probability. In particular, we show that (i) the set of randomly realisable statements is closed under intuitionistic first-order logic, but (ii) different from the set of realisable statements, that (iii) "realisability with probability 1" is the same as realisability and (iv) that the axioms of bounded Heyting's arithmetic are randomly realisable, but some instances of the full induction scheme fail to be randomly realisable.</description><subject>Arithmetic</subject><subject>Axioms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQDErMS8nPzSzOzEtXCEpNzMksTkzKzMksqeRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjEwsToOnGJgbGxKkCALgXKsk</recordid><startdate>20210129</startdate><enddate>20210129</enddate><creator>Merlin, Carl</creator><creator>Galeotti, Lorenzo</creator><creator>Passmann, Robert</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210129</creationdate><title>Randomising Realisability</title><author>Merlin, Carl ; Galeotti, Lorenzo ; Passmann, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24844223403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arithmetic</topic><topic>Axioms</topic><toplevel>online_resources</toplevel><creatorcontrib>Merlin, Carl</creatorcontrib><creatorcontrib>Galeotti, Lorenzo</creatorcontrib><creatorcontrib>Passmann, Robert</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merlin, Carl</au><au>Galeotti, Lorenzo</au><au>Passmann, Robert</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Randomising Realisability</atitle><jtitle>arXiv.org</jtitle><date>2021-01-29</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We consider a randomised version of Kleene's realisability interpretation of intuitionistic arithmetic in which computability is replaced with randomised computability with positive probability. In particular, we show that (i) the set of randomly realisable statements is closed under intuitionistic first-order logic, but (ii) different from the set of realisable statements, that (iii) "realisability with probability 1" is the same as realisability and (iv) that the axioms of bounded Heyting's arithmetic are randomly realisable, but some instances of the full induction scheme fail to be randomly realisable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2484422340 |
source | ProQuest - Publicly Available Content Database |
subjects | Arithmetic Axioms |
title | Randomising Realisability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Randomising%20Realisability&rft.jtitle=arXiv.org&rft.au=Merlin,%20Carl&rft.date=2021-01-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2484422340%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24844223403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2484422340&rft_id=info:pmid/&rfr_iscdi=true |