Loading…
Geochronological and petrological constraints from the evolution in the Saxon Granulite Massif, Germany, on the Variscan continental collision orogeny
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure i...
Saved in:
Published in: | Journal of metamorphic geology 2021-01, Vol.39 (1), p.3-38 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a3559-e4d9c3445943ef89a39719823526cc2cc343b03a1d3f5a6fb1f3bc9fee860bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-a3559-e4d9c3445943ef89a39719823526cc2cc343b03a1d3f5a6fb1f3bc9fee860bc3 |
container_end_page | 38 |
container_issue | 1 |
container_start_page | 3 |
container_title | Journal of metamorphic geology |
container_volume | 39 |
creator | Rötzler, Jochen Timmerman, Martin J. |
description | Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published P–T–t data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem. |
doi_str_mv | 10.1111/jmg.12559 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484690901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484690901</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3559-e4d9c3445943ef89a39719823526cc2cc343b03a1d3f5a6fb1f3bc9fee860bc3</originalsourceid><addsrcrecordid>eNp1kM9OwzAMxiMEEmNw4A0icUKiW_OnpTmiCQpoEwcmrlWaJVumNBlJCvRFeF66FXHDF8v2z5_lD4BLlE5QH9Nts54gnGXsCIxQhrMEEUSPwSjFOUkow-wUnIWwTVNEMKEj8F1KJzbeWWfcWgtuILcruJPR_zWEsyF6rm0MUHnXwLiRUH4400btLNT20HjlX31Rem5bo6OECx6CVjewlL7htruBbuDeuNdBcLuXjdpKGw8njNFhr-a8W0vbnYMTxU2QF795DJYP98vZYzJ_KZ9md_OEk_7HRNIVE4TSjFEiVcE4YbeIFZhkOBcCi35G6pRwtCIq47mqkSK1YErKIk9rQcbgapDdeffeyhCrrWu97S9WmBY0ZynrjRqD64ES3oXgpap2XjfcdxVKq73rVe96dXC9Z6cD-6mN7P4Hq-dFOWz8AMhZh0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484690901</pqid></control><display><type>article</type><title>Geochronological and petrological constraints from the evolution in the Saxon Granulite Massif, Germany, on the Variscan continental collision orogeny</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Rötzler, Jochen ; Timmerman, Martin J.</creator><creatorcontrib>Rötzler, Jochen ; Timmerman, Martin J.</creatorcontrib><description>Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published P–T–t data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.</description><identifier>ISSN: 0263-4929</identifier><identifier>EISSN: 1525-1314</identifier><identifier>DOI: 10.1111/jmg.12559</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Affinity ; Amphibolite facies ; Amphibolites ; Argon ; Belts ; Biotite ; Cambrian ; Carboniferous ; Cooling ; Cooling rate ; Devonian ; Diapirs ; Diffusion rate ; Evolution ; Geochronology ; Gondwana ; granulite ; high‐P metamorphism ; Isotopes ; Massifs ; Metamorphism ; Metamorphism (geology) ; metaophiolite ; Orogeny ; Palaeozoic ; Plate tectonics ; Plates (tectonics) ; Sedimentary facies ; Shear zone ; Slivers ; Subduction ; Subduction (geology) ; Subduction zones ; Time lag ; Variscan orogeny</subject><ispartof>Journal of metamorphic geology, 2021-01, Vol.39 (1), p.3-38</ispartof><rights>2020 The Authors. Journal of Metamorphic Geology published by John Wiley & Sons Ltd</rights><rights>Copyright Blackwell Publishing Ltd. Jan 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3559-e4d9c3445943ef89a39719823526cc2cc343b03a1d3f5a6fb1f3bc9fee860bc3</citedby><cites>FETCH-LOGICAL-a3559-e4d9c3445943ef89a39719823526cc2cc343b03a1d3f5a6fb1f3bc9fee860bc3</cites><orcidid>0000-0003-2963-4675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rötzler, Jochen</creatorcontrib><creatorcontrib>Timmerman, Martin J.</creatorcontrib><title>Geochronological and petrological constraints from the evolution in the Saxon Granulite Massif, Germany, on the Variscan continental collision orogeny</title><title>Journal of metamorphic geology</title><description>Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published P–T–t data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.</description><subject>Affinity</subject><subject>Amphibolite facies</subject><subject>Amphibolites</subject><subject>Argon</subject><subject>Belts</subject><subject>Biotite</subject><subject>Cambrian</subject><subject>Carboniferous</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Devonian</subject><subject>Diapirs</subject><subject>Diffusion rate</subject><subject>Evolution</subject><subject>Geochronology</subject><subject>Gondwana</subject><subject>granulite</subject><subject>high‐P metamorphism</subject><subject>Isotopes</subject><subject>Massifs</subject><subject>Metamorphism</subject><subject>Metamorphism (geology)</subject><subject>metaophiolite</subject><subject>Orogeny</subject><subject>Palaeozoic</subject><subject>Plate tectonics</subject><subject>Plates (tectonics)</subject><subject>Sedimentary facies</subject><subject>Shear zone</subject><subject>Slivers</subject><subject>Subduction</subject><subject>Subduction (geology)</subject><subject>Subduction zones</subject><subject>Time lag</subject><subject>Variscan orogeny</subject><issn>0263-4929</issn><issn>1525-1314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kM9OwzAMxiMEEmNw4A0icUKiW_OnpTmiCQpoEwcmrlWaJVumNBlJCvRFeF66FXHDF8v2z5_lD4BLlE5QH9Nts54gnGXsCIxQhrMEEUSPwSjFOUkow-wUnIWwTVNEMKEj8F1KJzbeWWfcWgtuILcruJPR_zWEsyF6rm0MUHnXwLiRUH4400btLNT20HjlX31Rem5bo6OECx6CVjewlL7htruBbuDeuNdBcLuXjdpKGw8njNFhr-a8W0vbnYMTxU2QF795DJYP98vZYzJ_KZ9md_OEk_7HRNIVE4TSjFEiVcE4YbeIFZhkOBcCi35G6pRwtCIq47mqkSK1YErKIk9rQcbgapDdeffeyhCrrWu97S9WmBY0ZynrjRqD64ES3oXgpap2XjfcdxVKq73rVe96dXC9Z6cD-6mN7P4Hq-dFOWz8AMhZh0M</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Rötzler, Jochen</creator><creator>Timmerman, Martin J.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-2963-4675</orcidid></search><sort><creationdate>202101</creationdate><title>Geochronological and petrological constraints from the evolution in the Saxon Granulite Massif, Germany, on the Variscan continental collision orogeny</title><author>Rötzler, Jochen ; Timmerman, Martin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3559-e4d9c3445943ef89a39719823526cc2cc343b03a1d3f5a6fb1f3bc9fee860bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Affinity</topic><topic>Amphibolite facies</topic><topic>Amphibolites</topic><topic>Argon</topic><topic>Belts</topic><topic>Biotite</topic><topic>Cambrian</topic><topic>Carboniferous</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Devonian</topic><topic>Diapirs</topic><topic>Diffusion rate</topic><topic>Evolution</topic><topic>Geochronology</topic><topic>Gondwana</topic><topic>granulite</topic><topic>high‐P metamorphism</topic><topic>Isotopes</topic><topic>Massifs</topic><topic>Metamorphism</topic><topic>Metamorphism (geology)</topic><topic>metaophiolite</topic><topic>Orogeny</topic><topic>Palaeozoic</topic><topic>Plate tectonics</topic><topic>Plates (tectonics)</topic><topic>Sedimentary facies</topic><topic>Shear zone</topic><topic>Slivers</topic><topic>Subduction</topic><topic>Subduction (geology)</topic><topic>Subduction zones</topic><topic>Time lag</topic><topic>Variscan orogeny</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rötzler, Jochen</creatorcontrib><creatorcontrib>Timmerman, Martin J.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of metamorphic geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rötzler, Jochen</au><au>Timmerman, Martin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geochronological and petrological constraints from the evolution in the Saxon Granulite Massif, Germany, on the Variscan continental collision orogeny</atitle><jtitle>Journal of metamorphic geology</jtitle><date>2021-01</date><risdate>2021</risdate><volume>39</volume><issue>1</issue><spage>3</spage><epage>38</epage><pages>3-38</pages><issn>0263-4929</issn><eissn>1525-1314</eissn><abstract>Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published P–T–t data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jmg.12559</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0003-2963-4675</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-4929 |
ispartof | Journal of metamorphic geology, 2021-01, Vol.39 (1), p.3-38 |
issn | 0263-4929 1525-1314 |
language | eng |
recordid | cdi_proquest_journals_2484690901 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Affinity Amphibolite facies Amphibolites Argon Belts Biotite Cambrian Carboniferous Cooling Cooling rate Devonian Diapirs Diffusion rate Evolution Geochronology Gondwana granulite high‐P metamorphism Isotopes Massifs Metamorphism Metamorphism (geology) metaophiolite Orogeny Palaeozoic Plate tectonics Plates (tectonics) Sedimentary facies Shear zone Slivers Subduction Subduction (geology) Subduction zones Time lag Variscan orogeny |
title | Geochronological and petrological constraints from the evolution in the Saxon Granulite Massif, Germany, on the Variscan continental collision orogeny |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geochronological%20and%20petrological%20constraints%20from%20the%20evolution%20in%20the%20Saxon%20Granulite%20Massif,%20Germany,%20on%20the%20Variscan%20continental%20collision%20orogeny&rft.jtitle=Journal%20of%20metamorphic%20geology&rft.au=R%C3%B6tzler,%20Jochen&rft.date=2021-01&rft.volume=39&rft.issue=1&rft.spage=3&rft.epage=38&rft.pages=3-38&rft.issn=0263-4929&rft.eissn=1525-1314&rft_id=info:doi/10.1111/jmg.12559&rft_dat=%3Cproquest_cross%3E2484690901%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3559-e4d9c3445943ef89a39719823526cc2cc343b03a1d3f5a6fb1f3bc9fee860bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2484690901&rft_id=info:pmid/&rfr_iscdi=true |