Loading…

Geochronological and petrological constraints from the evolution in the Saxon Granulite Massif, Germany, on the Variscan continental collision orogeny

Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of metamorphic geology 2021-01, Vol.39 (1), p.3-38
Main Authors: Rötzler, Jochen, Timmerman, Martin J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3559-e4d9c3445943ef89a39719823526cc2cc343b03a1d3f5a6fb1f3bc9fee860bc3
cites cdi_FETCH-LOGICAL-a3559-e4d9c3445943ef89a39719823526cc2cc343b03a1d3f5a6fb1f3bc9fee860bc3
container_end_page 38
container_issue 1
container_start_page 3
container_title Journal of metamorphic geology
container_volume 39
creator Rötzler, Jochen
Timmerman, Martin J.
description Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published P–T–t data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.
doi_str_mv 10.1111/jmg.12559
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484690901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484690901</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3559-e4d9c3445943ef89a39719823526cc2cc343b03a1d3f5a6fb1f3bc9fee860bc3</originalsourceid><addsrcrecordid>eNp1kM9OwzAMxiMEEmNw4A0icUKiW_OnpTmiCQpoEwcmrlWaJVumNBlJCvRFeF66FXHDF8v2z5_lD4BLlE5QH9Nts54gnGXsCIxQhrMEEUSPwSjFOUkow-wUnIWwTVNEMKEj8F1KJzbeWWfcWgtuILcruJPR_zWEsyF6rm0MUHnXwLiRUH4400btLNT20HjlX31Rem5bo6OECx6CVjewlL7htruBbuDeuNdBcLuXjdpKGw8njNFhr-a8W0vbnYMTxU2QF795DJYP98vZYzJ_KZ9md_OEk_7HRNIVE4TSjFEiVcE4YbeIFZhkOBcCi35G6pRwtCIq47mqkSK1YErKIk9rQcbgapDdeffeyhCrrWu97S9WmBY0ZynrjRqD64ES3oXgpap2XjfcdxVKq73rVe96dXC9Z6cD-6mN7P4Hq-dFOWz8AMhZh0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484690901</pqid></control><display><type>article</type><title>Geochronological and petrological constraints from the evolution in the Saxon Granulite Massif, Germany, on the Variscan continental collision orogeny</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Rötzler, Jochen ; Timmerman, Martin J.</creator><creatorcontrib>Rötzler, Jochen ; Timmerman, Martin J.</creatorcontrib><description>Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published P–T–t data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.</description><identifier>ISSN: 0263-4929</identifier><identifier>EISSN: 1525-1314</identifier><identifier>DOI: 10.1111/jmg.12559</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Affinity ; Amphibolite facies ; Amphibolites ; Argon ; Belts ; Biotite ; Cambrian ; Carboniferous ; Cooling ; Cooling rate ; Devonian ; Diapirs ; Diffusion rate ; Evolution ; Geochronology ; Gondwana ; granulite ; high‐P metamorphism ; Isotopes ; Massifs ; Metamorphism ; Metamorphism (geology) ; metaophiolite ; Orogeny ; Palaeozoic ; Plate tectonics ; Plates (tectonics) ; Sedimentary facies ; Shear zone ; Slivers ; Subduction ; Subduction (geology) ; Subduction zones ; Time lag ; Variscan orogeny</subject><ispartof>Journal of metamorphic geology, 2021-01, Vol.39 (1), p.3-38</ispartof><rights>2020 The Authors. Journal of Metamorphic Geology published by John Wiley &amp; Sons Ltd</rights><rights>Copyright Blackwell Publishing Ltd. Jan 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3559-e4d9c3445943ef89a39719823526cc2cc343b03a1d3f5a6fb1f3bc9fee860bc3</citedby><cites>FETCH-LOGICAL-a3559-e4d9c3445943ef89a39719823526cc2cc343b03a1d3f5a6fb1f3bc9fee860bc3</cites><orcidid>0000-0003-2963-4675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rötzler, Jochen</creatorcontrib><creatorcontrib>Timmerman, Martin J.</creatorcontrib><title>Geochronological and petrological constraints from the evolution in the Saxon Granulite Massif, Germany, on the Variscan continental collision orogeny</title><title>Journal of metamorphic geology</title><description>Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published P–T–t data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.</description><subject>Affinity</subject><subject>Amphibolite facies</subject><subject>Amphibolites</subject><subject>Argon</subject><subject>Belts</subject><subject>Biotite</subject><subject>Cambrian</subject><subject>Carboniferous</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Devonian</subject><subject>Diapirs</subject><subject>Diffusion rate</subject><subject>Evolution</subject><subject>Geochronology</subject><subject>Gondwana</subject><subject>granulite</subject><subject>high‐P metamorphism</subject><subject>Isotopes</subject><subject>Massifs</subject><subject>Metamorphism</subject><subject>Metamorphism (geology)</subject><subject>metaophiolite</subject><subject>Orogeny</subject><subject>Palaeozoic</subject><subject>Plate tectonics</subject><subject>Plates (tectonics)</subject><subject>Sedimentary facies</subject><subject>Shear zone</subject><subject>Slivers</subject><subject>Subduction</subject><subject>Subduction (geology)</subject><subject>Subduction zones</subject><subject>Time lag</subject><subject>Variscan orogeny</subject><issn>0263-4929</issn><issn>1525-1314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kM9OwzAMxiMEEmNw4A0icUKiW_OnpTmiCQpoEwcmrlWaJVumNBlJCvRFeF66FXHDF8v2z5_lD4BLlE5QH9Nts54gnGXsCIxQhrMEEUSPwSjFOUkow-wUnIWwTVNEMKEj8F1KJzbeWWfcWgtuILcruJPR_zWEsyF6rm0MUHnXwLiRUH4400btLNT20HjlX31Rem5bo6OECx6CVjewlL7htruBbuDeuNdBcLuXjdpKGw8njNFhr-a8W0vbnYMTxU2QF795DJYP98vZYzJ_KZ9md_OEk_7HRNIVE4TSjFEiVcE4YbeIFZhkOBcCi35G6pRwtCIq47mqkSK1YErKIk9rQcbgapDdeffeyhCrrWu97S9WmBY0ZynrjRqD64ES3oXgpap2XjfcdxVKq73rVe96dXC9Z6cD-6mN7P4Hq-dFOWz8AMhZh0M</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Rötzler, Jochen</creator><creator>Timmerman, Martin J.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-2963-4675</orcidid></search><sort><creationdate>202101</creationdate><title>Geochronological and petrological constraints from the evolution in the Saxon Granulite Massif, Germany, on the Variscan continental collision orogeny</title><author>Rötzler, Jochen ; Timmerman, Martin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3559-e4d9c3445943ef89a39719823526cc2cc343b03a1d3f5a6fb1f3bc9fee860bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Affinity</topic><topic>Amphibolite facies</topic><topic>Amphibolites</topic><topic>Argon</topic><topic>Belts</topic><topic>Biotite</topic><topic>Cambrian</topic><topic>Carboniferous</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Devonian</topic><topic>Diapirs</topic><topic>Diffusion rate</topic><topic>Evolution</topic><topic>Geochronology</topic><topic>Gondwana</topic><topic>granulite</topic><topic>high‐P metamorphism</topic><topic>Isotopes</topic><topic>Massifs</topic><topic>Metamorphism</topic><topic>Metamorphism (geology)</topic><topic>metaophiolite</topic><topic>Orogeny</topic><topic>Palaeozoic</topic><topic>Plate tectonics</topic><topic>Plates (tectonics)</topic><topic>Sedimentary facies</topic><topic>Shear zone</topic><topic>Slivers</topic><topic>Subduction</topic><topic>Subduction (geology)</topic><topic>Subduction zones</topic><topic>Time lag</topic><topic>Variscan orogeny</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rötzler, Jochen</creatorcontrib><creatorcontrib>Timmerman, Martin J.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of metamorphic geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rötzler, Jochen</au><au>Timmerman, Martin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geochronological and petrological constraints from the evolution in the Saxon Granulite Massif, Germany, on the Variscan continental collision orogeny</atitle><jtitle>Journal of metamorphic geology</jtitle><date>2021-01</date><risdate>2021</risdate><volume>39</volume><issue>1</issue><spage>3</spage><epage>38</epage><pages>3-38</pages><issn>0263-4929</issn><eissn>1525-1314</eissn><abstract>Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published P–T–t data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jmg.12559</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0003-2963-4675</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-4929
ispartof Journal of metamorphic geology, 2021-01, Vol.39 (1), p.3-38
issn 0263-4929
1525-1314
language eng
recordid cdi_proquest_journals_2484690901
source Wiley-Blackwell Read & Publish Collection
subjects Affinity
Amphibolite facies
Amphibolites
Argon
Belts
Biotite
Cambrian
Carboniferous
Cooling
Cooling rate
Devonian
Diapirs
Diffusion rate
Evolution
Geochronology
Gondwana
granulite
high‐P metamorphism
Isotopes
Massifs
Metamorphism
Metamorphism (geology)
metaophiolite
Orogeny
Palaeozoic
Plate tectonics
Plates (tectonics)
Sedimentary facies
Shear zone
Slivers
Subduction
Subduction (geology)
Subduction zones
Time lag
Variscan orogeny
title Geochronological and petrological constraints from the evolution in the Saxon Granulite Massif, Germany, on the Variscan continental collision orogeny
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geochronological%20and%20petrological%20constraints%20from%20the%20evolution%20in%20the%20Saxon%20Granulite%20Massif,%20Germany,%20on%20the%20Variscan%20continental%20collision%20orogeny&rft.jtitle=Journal%20of%20metamorphic%20geology&rft.au=R%C3%B6tzler,%20Jochen&rft.date=2021-01&rft.volume=39&rft.issue=1&rft.spage=3&rft.epage=38&rft.pages=3-38&rft.issn=0263-4929&rft.eissn=1525-1314&rft_id=info:doi/10.1111/jmg.12559&rft_dat=%3Cproquest_cross%3E2484690901%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3559-e4d9c3445943ef89a39719823526cc2cc343b03a1d3f5a6fb1f3bc9fee860bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2484690901&rft_id=info:pmid/&rfr_iscdi=true