Loading…
High-Frequency Volatility Forecasting of US Housing Markets
We propose a logistic smooth transition autoregressive fractionally integrated [STARFI ( p , d )] process for modeling and forecasting US housing price volatility. We discuss the statistical properties of the model and investigate its forecasting performance by assuming various specifications for th...
Saved in:
Published in: | The journal of real estate finance and economics 2021-02, Vol.62 (2), p.283-317 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c453t-be9dc1327427b7dd06c0ced38a7b4b228d6432731acc8b1f499fe29e78e56b1e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c453t-be9dc1327427b7dd06c0ced38a7b4b228d6432731acc8b1f499fe29e78e56b1e3 |
container_end_page | 317 |
container_issue | 2 |
container_start_page | 283 |
container_title | The journal of real estate finance and economics |
container_volume | 62 |
creator | Segnon, Mawuli Gupta, Rangan Lesame, Keagile Wohar, Mark E. |
description | We propose a logistic smooth transition autoregressive fractionally integrated [STARFI (
p
,
d
)] process for modeling and forecasting US housing price volatility. We discuss the statistical properties of the model and investigate its forecasting performance by assuming various specifications for the dynamics underlying the variance process in the model. Using a unique database of daily data on price indices from ten major US cities, and the corresponding daily Composite 10 Housing Price Index, and also a housing futures price index, we find that using the Markov-switching multifractal (MSM) and FIGARCH frameworks for modeling the variance process helps improving the gains in forecast accuracy. |
doi_str_mv | 10.1007/s11146-020-09745-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2485326796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485326796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-be9dc1327427b7dd06c0ced38a7b4b228d6432731acc8b1f499fe29e78e56b1e3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkf4InEWuFigeteAvZbLZurbs12VL67U1dwZunYZj33jx-CJ0TuCQA6ioRQrjEQAGDUVzg7QEaEaEYBi7eDtEItBFYSKaP0UlKSwCQSsMIXU-bxTuexPC1Ca3fFa_dyvXNqul3xaSLwbvUN-2i6Opi_lxMu03ab48ufoQ-naKj2q1SOPudYzSf3L3cTvHs6f7h9maGPResx2UwlSeMKk5VqaoKpAcfKqadKnlJqa4kz1dGnPe6JDU3pg7UBKWDkCUJbIwuhtx17HLN1Ntlt4ltfmkp14JRqYzMKjqofOxSiqG269h8urizBOwekh0g2QzJ_kCy22xigyllcbsI8S_6H9c38c9qNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485326796</pqid></control><display><type>article</type><title>High-Frequency Volatility Forecasting of US Housing Markets</title><source>EconLit s plnými texty</source><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Segnon, Mawuli ; Gupta, Rangan ; Lesame, Keagile ; Wohar, Mark E.</creator><creatorcontrib>Segnon, Mawuli ; Gupta, Rangan ; Lesame, Keagile ; Wohar, Mark E.</creatorcontrib><description>We propose a logistic smooth transition autoregressive fractionally integrated [STARFI (
p
,
d
)] process for modeling and forecasting US housing price volatility. We discuss the statistical properties of the model and investigate its forecasting performance by assuming various specifications for the dynamics underlying the variance process in the model. Using a unique database of daily data on price indices from ten major US cities, and the corresponding daily Composite 10 Housing Price Index, and also a housing futures price index, we find that using the Markov-switching multifractal (MSM) and FIGARCH frameworks for modeling the variance process helps improving the gains in forecast accuracy.</description><identifier>ISSN: 0895-5638</identifier><identifier>EISSN: 1573-045X</identifier><identifier>DOI: 10.1007/s11146-020-09745-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Economics ; Economics and Finance ; Financial Services ; Forecasting ; Housing market ; Housing prices ; Price indexes ; Regional/Spatial Science ; Volatility</subject><ispartof>The journal of real estate finance and economics, 2021-02, Vol.62 (2), p.283-317</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-be9dc1327427b7dd06c0ced38a7b4b228d6432731acc8b1f499fe29e78e56b1e3</citedby><cites>FETCH-LOGICAL-c453t-be9dc1327427b7dd06c0ced38a7b4b228d6432731acc8b1f499fe29e78e56b1e3</cites><orcidid>0000-0002-4967-0609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2485326796/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2485326796?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,12847,27924,27925,33223,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Segnon, Mawuli</creatorcontrib><creatorcontrib>Gupta, Rangan</creatorcontrib><creatorcontrib>Lesame, Keagile</creatorcontrib><creatorcontrib>Wohar, Mark E.</creatorcontrib><title>High-Frequency Volatility Forecasting of US Housing Markets</title><title>The journal of real estate finance and economics</title><addtitle>J Real Estate Finan Econ</addtitle><description>We propose a logistic smooth transition autoregressive fractionally integrated [STARFI (
p
,
d
)] process for modeling and forecasting US housing price volatility. We discuss the statistical properties of the model and investigate its forecasting performance by assuming various specifications for the dynamics underlying the variance process in the model. Using a unique database of daily data on price indices from ten major US cities, and the corresponding daily Composite 10 Housing Price Index, and also a housing futures price index, we find that using the Markov-switching multifractal (MSM) and FIGARCH frameworks for modeling the variance process helps improving the gains in forecast accuracy.</description><subject>Economics</subject><subject>Economics and Finance</subject><subject>Financial Services</subject><subject>Forecasting</subject><subject>Housing market</subject><subject>Housing prices</subject><subject>Price indexes</subject><subject>Regional/Spatial Science</subject><subject>Volatility</subject><issn>0895-5638</issn><issn>1573-045X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkf4InEWuFigeteAvZbLZurbs12VL67U1dwZunYZj33jx-CJ0TuCQA6ioRQrjEQAGDUVzg7QEaEaEYBi7eDtEItBFYSKaP0UlKSwCQSsMIXU-bxTuexPC1Ca3fFa_dyvXNqul3xaSLwbvUN-2i6Opi_lxMu03ab48ufoQ-naKj2q1SOPudYzSf3L3cTvHs6f7h9maGPResx2UwlSeMKk5VqaoKpAcfKqadKnlJqa4kz1dGnPe6JDU3pg7UBKWDkCUJbIwuhtx17HLN1Ntlt4ltfmkp14JRqYzMKjqofOxSiqG269h8urizBOwekh0g2QzJ_kCy22xigyllcbsI8S_6H9c38c9qNg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Segnon, Mawuli</creator><creator>Gupta, Rangan</creator><creator>Lesame, Keagile</creator><creator>Wohar, Mark E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>885</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M1F</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4967-0609</orcidid></search><sort><creationdate>20210201</creationdate><title>High-Frequency Volatility Forecasting of US Housing Markets</title><author>Segnon, Mawuli ; Gupta, Rangan ; Lesame, Keagile ; Wohar, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-be9dc1327427b7dd06c0ced38a7b4b228d6432731acc8b1f499fe29e78e56b1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Economics</topic><topic>Economics and Finance</topic><topic>Financial Services</topic><topic>Forecasting</topic><topic>Housing market</topic><topic>Housing prices</topic><topic>Price indexes</topic><topic>Regional/Spatial Science</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Segnon, Mawuli</creatorcontrib><creatorcontrib>Gupta, Rangan</creatorcontrib><creatorcontrib>Lesame, Keagile</creatorcontrib><creatorcontrib>Wohar, Mark E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Banking Information Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Accounting, Tax & Banking Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Accounting, Tax & Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Banking Information Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>The journal of real estate finance and economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Segnon, Mawuli</au><au>Gupta, Rangan</au><au>Lesame, Keagile</au><au>Wohar, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Frequency Volatility Forecasting of US Housing Markets</atitle><jtitle>The journal of real estate finance and economics</jtitle><stitle>J Real Estate Finan Econ</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>62</volume><issue>2</issue><spage>283</spage><epage>317</epage><pages>283-317</pages><issn>0895-5638</issn><eissn>1573-045X</eissn><abstract>We propose a logistic smooth transition autoregressive fractionally integrated [STARFI (
p
,
d
)] process for modeling and forecasting US housing price volatility. We discuss the statistical properties of the model and investigate its forecasting performance by assuming various specifications for the dynamics underlying the variance process in the model. Using a unique database of daily data on price indices from ten major US cities, and the corresponding daily Composite 10 Housing Price Index, and also a housing futures price index, we find that using the Markov-switching multifractal (MSM) and FIGARCH frameworks for modeling the variance process helps improving the gains in forecast accuracy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11146-020-09745-w</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-4967-0609</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-5638 |
ispartof | The journal of real estate finance and economics, 2021-02, Vol.62 (2), p.283-317 |
issn | 0895-5638 1573-045X |
language | eng |
recordid | cdi_proquest_journals_2485326796 |
source | EconLit s plnými texty; EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); ABI/INFORM Global; Springer Link |
subjects | Economics Economics and Finance Financial Services Forecasting Housing market Housing prices Price indexes Regional/Spatial Science Volatility |
title | High-Frequency Volatility Forecasting of US Housing Markets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Frequency%20Volatility%20Forecasting%20of%20US%20Housing%20Markets&rft.jtitle=The%20journal%20of%20real%20estate%20finance%20and%20economics&rft.au=Segnon,%20Mawuli&rft.date=2021-02-01&rft.volume=62&rft.issue=2&rft.spage=283&rft.epage=317&rft.pages=283-317&rft.issn=0895-5638&rft.eissn=1573-045X&rft_id=info:doi/10.1007/s11146-020-09745-w&rft_dat=%3Cproquest_cross%3E2485326796%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-be9dc1327427b7dd06c0ced38a7b4b228d6432731acc8b1f499fe29e78e56b1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2485326796&rft_id=info:pmid/&rfr_iscdi=true |