Loading…
Fast spectroscopic mapping of two-dimensional quantum materials
Spectroscopic mapping refers to the massive recording of spectra whilst varying an additional degree of freedom, such as: magnetic field, location, temperature, or charge carrier concentration. As this involves two serial tasks, spectroscopic mapping can become excruciatingly slow. We demonstrate ex...
Saved in:
Published in: | arXiv.org 2021-01 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Berk Zengin Oppliger, Jens Liu, Danyang Niggli, Lorena Kurosawa, Tohru Fabian Donat Natterer |
description | Spectroscopic mapping refers to the massive recording of spectra whilst varying an additional degree of freedom, such as: magnetic field, location, temperature, or charge carrier concentration. As this involves two serial tasks, spectroscopic mapping can become excruciatingly slow. We demonstrate exponentially faster mapping through our combination of sparse sampling and parallel spectroscopy. We exemplify our concept using quasiparticle interference imaging of Au(111) and Bi2Sr2CaCu2O8 (Bi2212), as two well-known model systems. Our method is accessible, straightforward to implement with existing scanning tunneling microscopes, and can be easily extended to enhance gate or field-mapping spectroscopy. In view of a possible four orders of magnitude speed advantage, it is setting the stage to fundamentally promote the discovery of novel quantum materials. |
doi_str_mv | 10.48550/arxiv.2102.00054 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2485336328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485336328</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-da2787aec2bdeaa7d748a9877ea1632ca30b2c4f7d9a96fb565ee57430c54bb23</originalsourceid><addsrcrecordid>eNotj1FLwzAUhYMgOOZ-gG8Bn1PTm6RJn0SG08HAl72P2zSVjLXJmlT9-Qb06YPD4eMcQh5qXkmjFH_C-cd_VVBzqDjnSt6QFQhRMyMB7sgmpXOJodGglFiR5x2mTFN0Ns8h2RC9pSPG6KdPGgaavwPr_eim5MOEF3pdcMrLWCrZzR4v6Z7cDgVu8881Oe5ej9t3dvh4229fDgwVGNYjaKPRWeh6h6h7LQ22RmuHdSPAouAdWDnovsW2GTrVKOeUloJbJbsOxJo8_mnjHK6LS_l0DstcFqUTlNtCFIsRv8pjS8c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485336328</pqid></control><display><type>article</type><title>Fast spectroscopic mapping of two-dimensional quantum materials</title><source>Publicly Available Content Database</source><creator>Berk Zengin ; Oppliger, Jens ; Liu, Danyang ; Niggli, Lorena ; Kurosawa, Tohru ; Fabian Donat Natterer</creator><creatorcontrib>Berk Zengin ; Oppliger, Jens ; Liu, Danyang ; Niggli, Lorena ; Kurosawa, Tohru ; Fabian Donat Natterer</creatorcontrib><description>Spectroscopic mapping refers to the massive recording of spectra whilst varying an additional degree of freedom, such as: magnetic field, location, temperature, or charge carrier concentration. As this involves two serial tasks, spectroscopic mapping can become excruciatingly slow. We demonstrate exponentially faster mapping through our combination of sparse sampling and parallel spectroscopy. We exemplify our concept using quasiparticle interference imaging of Au(111) and Bi2Sr2CaCu2O8 (Bi2212), as two well-known model systems. Our method is accessible, straightforward to implement with existing scanning tunneling microscopes, and can be easily extended to enhance gate or field-mapping spectroscopy. In view of a possible four orders of magnitude speed advantage, it is setting the stage to fundamentally promote the discovery of novel quantum materials.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2102.00054</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bismuth strontium calcium copper oxide ; Carrier density ; Current carriers ; Elementary excitations ; Mapping ; Microscopes ; Spectroscopy ; Spectrum analysis</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2485336328?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Berk Zengin</creatorcontrib><creatorcontrib>Oppliger, Jens</creatorcontrib><creatorcontrib>Liu, Danyang</creatorcontrib><creatorcontrib>Niggli, Lorena</creatorcontrib><creatorcontrib>Kurosawa, Tohru</creatorcontrib><creatorcontrib>Fabian Donat Natterer</creatorcontrib><title>Fast spectroscopic mapping of two-dimensional quantum materials</title><title>arXiv.org</title><description>Spectroscopic mapping refers to the massive recording of spectra whilst varying an additional degree of freedom, such as: magnetic field, location, temperature, or charge carrier concentration. As this involves two serial tasks, spectroscopic mapping can become excruciatingly slow. We demonstrate exponentially faster mapping through our combination of sparse sampling and parallel spectroscopy. We exemplify our concept using quasiparticle interference imaging of Au(111) and Bi2Sr2CaCu2O8 (Bi2212), as two well-known model systems. Our method is accessible, straightforward to implement with existing scanning tunneling microscopes, and can be easily extended to enhance gate or field-mapping spectroscopy. In view of a possible four orders of magnitude speed advantage, it is setting the stage to fundamentally promote the discovery of novel quantum materials.</description><subject>Bismuth strontium calcium copper oxide</subject><subject>Carrier density</subject><subject>Current carriers</subject><subject>Elementary excitations</subject><subject>Mapping</subject><subject>Microscopes</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj1FLwzAUhYMgOOZ-gG8Bn1PTm6RJn0SG08HAl72P2zSVjLXJmlT9-Qb06YPD4eMcQh5qXkmjFH_C-cd_VVBzqDjnSt6QFQhRMyMB7sgmpXOJodGglFiR5x2mTFN0Ns8h2RC9pSPG6KdPGgaavwPr_eim5MOEF3pdcMrLWCrZzR4v6Z7cDgVu8881Oe5ej9t3dvh4229fDgwVGNYjaKPRWeh6h6h7LQ22RmuHdSPAouAdWDnovsW2GTrVKOeUloJbJbsOxJo8_mnjHK6LS_l0DstcFqUTlNtCFIsRv8pjS8c</recordid><startdate>20210129</startdate><enddate>20210129</enddate><creator>Berk Zengin</creator><creator>Oppliger, Jens</creator><creator>Liu, Danyang</creator><creator>Niggli, Lorena</creator><creator>Kurosawa, Tohru</creator><creator>Fabian Donat Natterer</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210129</creationdate><title>Fast spectroscopic mapping of two-dimensional quantum materials</title><author>Berk Zengin ; Oppliger, Jens ; Liu, Danyang ; Niggli, Lorena ; Kurosawa, Tohru ; Fabian Donat Natterer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-da2787aec2bdeaa7d748a9877ea1632ca30b2c4f7d9a96fb565ee57430c54bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bismuth strontium calcium copper oxide</topic><topic>Carrier density</topic><topic>Current carriers</topic><topic>Elementary excitations</topic><topic>Mapping</topic><topic>Microscopes</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Berk Zengin</creatorcontrib><creatorcontrib>Oppliger, Jens</creatorcontrib><creatorcontrib>Liu, Danyang</creatorcontrib><creatorcontrib>Niggli, Lorena</creatorcontrib><creatorcontrib>Kurosawa, Tohru</creatorcontrib><creatorcontrib>Fabian Donat Natterer</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berk Zengin</au><au>Oppliger, Jens</au><au>Liu, Danyang</au><au>Niggli, Lorena</au><au>Kurosawa, Tohru</au><au>Fabian Donat Natterer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast spectroscopic mapping of two-dimensional quantum materials</atitle><jtitle>arXiv.org</jtitle><date>2021-01-29</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Spectroscopic mapping refers to the massive recording of spectra whilst varying an additional degree of freedom, such as: magnetic field, location, temperature, or charge carrier concentration. As this involves two serial tasks, spectroscopic mapping can become excruciatingly slow. We demonstrate exponentially faster mapping through our combination of sparse sampling and parallel spectroscopy. We exemplify our concept using quasiparticle interference imaging of Au(111) and Bi2Sr2CaCu2O8 (Bi2212), as two well-known model systems. Our method is accessible, straightforward to implement with existing scanning tunneling microscopes, and can be easily extended to enhance gate or field-mapping spectroscopy. In view of a possible four orders of magnitude speed advantage, it is setting the stage to fundamentally promote the discovery of novel quantum materials.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2102.00054</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2485336328 |
source | Publicly Available Content Database |
subjects | Bismuth strontium calcium copper oxide Carrier density Current carriers Elementary excitations Mapping Microscopes Spectroscopy Spectrum analysis |
title | Fast spectroscopic mapping of two-dimensional quantum materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20spectroscopic%20mapping%20of%20two-dimensional%20quantum%20materials&rft.jtitle=arXiv.org&rft.au=Berk%20Zengin&rft.date=2021-01-29&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2102.00054&rft_dat=%3Cproquest%3E2485336328%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-da2787aec2bdeaa7d748a9877ea1632ca30b2c4f7d9a96fb565ee57430c54bb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2485336328&rft_id=info:pmid/&rfr_iscdi=true |