Loading…
An Adaptive Collocation Method with Weighted Extended PHT-Splines
This paper presents an adaptive collocation method with weighted extended PHT-splines. The authors modify the classification rules for basis functions based on the relation between the basis vertices and the computational domain. The Gaussian points are chosen to be collocation points since PHT-spli...
Saved in:
Published in: | Journal of systems science and complexity 2021-02, Vol.34 (1), p.47-67 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-458fbef52ea5e2f3bb4a4884c2015983a6e24ff1f6b3f9da525442339924a4d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-458fbef52ea5e2f3bb4a4884c2015983a6e24ff1f6b3f9da525442339924a4d33 |
container_end_page | 67 |
container_issue | 1 |
container_start_page | 47 |
container_title | Journal of systems science and complexity |
container_volume | 34 |
creator | Ni, Qian Deng, Jiansong Wang, Xuhui |
description | This paper presents an adaptive collocation method with weighted extended PHT-splines. The authors modify the classification rules for basis functions based on the relation between the basis vertices and the computational domain. The Gaussian points are chosen to be collocation points since PHT-splines are
C
1
continuous. The authors also provide relocation techniques to resolve the mismatch problem between the number of basis functions and the number of interpolation conditions. Compared to the traditional Greville collocation method, the new approach has improved accuracy with fewer oscillations. Several numerical examples are also provided to test our the proposed approach. |
doi_str_mv | 10.1007/s11424-020-9390-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486174879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486174879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-458fbef52ea5e2f3bb4a4884c2015983a6e24ff1f6b3f9da525442339924a4d33</originalsourceid><addsrcrecordid>eNp1kM1KxDAYRYMoOI4-gLuC62j-0yzLMDrCiIIjLkPaJtMOtalNxp-3N0MFV66-uzj3fnAAuMToGiMkbwLGjDCICIKKKgTlEZhhzhWUSMjjlBFSUGDCTsFZCDuEqFAon4Gi6LOiNkNsP2y28F3nKxNb32cPNja-zj7b2GSvtt020dbZ8ivavk7habWBz0PX9jacgxNnumAvfu8cvNwuN4sVXD_e3S-KNawoFhEynrvSOk6s4ZY4WpbMsDxnFUGYq5waYQlzDjtRUqdqwwlnjFCqFElgTekcXE27w-jf9zZEvfP7sU8vNWG5wJLlUiUKT1Q1-hBG6_Qwtm9m_NYY6YMpPZnSyZQ-mNIydcjUCYntt3b8W_6_9ANRnGnV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486174879</pqid></control><display><type>article</type><title>An Adaptive Collocation Method with Weighted Extended PHT-Splines</title><source>Springer Nature</source><creator>Ni, Qian ; Deng, Jiansong ; Wang, Xuhui</creator><creatorcontrib>Ni, Qian ; Deng, Jiansong ; Wang, Xuhui</creatorcontrib><description>This paper presents an adaptive collocation method with weighted extended PHT-splines. The authors modify the classification rules for basis functions based on the relation between the basis vertices and the computational domain. The Gaussian points are chosen to be collocation points since PHT-splines are
C
1
continuous. The authors also provide relocation techniques to resolve the mismatch problem between the number of basis functions and the number of interpolation conditions. Compared to the traditional Greville collocation method, the new approach has improved accuracy with fewer oscillations. Several numerical examples are also provided to test our the proposed approach.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-020-9390-7</identifier><language>eng</language><publisher>Beijing: Academy of Mathematics and Systems Science, Chinese Academy of Sciences</publisher><subject>Apexes ; Basis functions ; Collocation methods ; Complex Systems ; Control ; Interpolation ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Relocation ; Spline functions ; Statistics ; Systems Theory</subject><ispartof>Journal of systems science and complexity, 2021-02, Vol.34 (1), p.47-67</ispartof><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2020</rights><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-458fbef52ea5e2f3bb4a4884c2015983a6e24ff1f6b3f9da525442339924a4d33</citedby><cites>FETCH-LOGICAL-c316t-458fbef52ea5e2f3bb4a4884c2015983a6e24ff1f6b3f9da525442339924a4d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ni, Qian</creatorcontrib><creatorcontrib>Deng, Jiansong</creatorcontrib><creatorcontrib>Wang, Xuhui</creatorcontrib><title>An Adaptive Collocation Method with Weighted Extended PHT-Splines</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>This paper presents an adaptive collocation method with weighted extended PHT-splines. The authors modify the classification rules for basis functions based on the relation between the basis vertices and the computational domain. The Gaussian points are chosen to be collocation points since PHT-splines are
C
1
continuous. The authors also provide relocation techniques to resolve the mismatch problem between the number of basis functions and the number of interpolation conditions. Compared to the traditional Greville collocation method, the new approach has improved accuracy with fewer oscillations. Several numerical examples are also provided to test our the proposed approach.</description><subject>Apexes</subject><subject>Basis functions</subject><subject>Collocation methods</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Interpolation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Relocation</subject><subject>Spline functions</subject><subject>Statistics</subject><subject>Systems Theory</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAYRYMoOI4-gLuC62j-0yzLMDrCiIIjLkPaJtMOtalNxp-3N0MFV66-uzj3fnAAuMToGiMkbwLGjDCICIKKKgTlEZhhzhWUSMjjlBFSUGDCTsFZCDuEqFAon4Gi6LOiNkNsP2y28F3nKxNb32cPNja-zj7b2GSvtt020dbZ8ivavk7habWBz0PX9jacgxNnumAvfu8cvNwuN4sVXD_e3S-KNawoFhEynrvSOk6s4ZY4WpbMsDxnFUGYq5waYQlzDjtRUqdqwwlnjFCqFElgTekcXE27w-jf9zZEvfP7sU8vNWG5wJLlUiUKT1Q1-hBG6_Qwtm9m_NYY6YMpPZnSyZQ-mNIydcjUCYntt3b8W_6_9ANRnGnV</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ni, Qian</creator><creator>Deng, Jiansong</creator><creator>Wang, Xuhui</creator><general>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>An Adaptive Collocation Method with Weighted Extended PHT-Splines</title><author>Ni, Qian ; Deng, Jiansong ; Wang, Xuhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-458fbef52ea5e2f3bb4a4884c2015983a6e24ff1f6b3f9da525442339924a4d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Basis functions</topic><topic>Collocation methods</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Interpolation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Relocation</topic><topic>Spline functions</topic><topic>Statistics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Qian</creatorcontrib><creatorcontrib>Deng, Jiansong</creatorcontrib><creatorcontrib>Wang, Xuhui</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Qian</au><au>Deng, Jiansong</au><au>Wang, Xuhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Collocation Method with Weighted Extended PHT-Splines</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>34</volume><issue>1</issue><spage>47</spage><epage>67</epage><pages>47-67</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>This paper presents an adaptive collocation method with weighted extended PHT-splines. The authors modify the classification rules for basis functions based on the relation between the basis vertices and the computational domain. The Gaussian points are chosen to be collocation points since PHT-splines are
C
1
continuous. The authors also provide relocation techniques to resolve the mismatch problem between the number of basis functions and the number of interpolation conditions. Compared to the traditional Greville collocation method, the new approach has improved accuracy with fewer oscillations. Several numerical examples are also provided to test our the proposed approach.</abstract><cop>Beijing</cop><pub>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</pub><doi>10.1007/s11424-020-9390-7</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-6124 |
ispartof | Journal of systems science and complexity, 2021-02, Vol.34 (1), p.47-67 |
issn | 1009-6124 1559-7067 |
language | eng |
recordid | cdi_proquest_journals_2486174879 |
source | Springer Nature |
subjects | Apexes Basis functions Collocation methods Complex Systems Control Interpolation Mathematics Mathematics and Statistics Mathematics of Computing Operations Research/Decision Theory Relocation Spline functions Statistics Systems Theory |
title | An Adaptive Collocation Method with Weighted Extended PHT-Splines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Collocation%20Method%20with%20Weighted%20Extended%20PHT-Splines&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Ni,%20Qian&rft.date=2021-02-01&rft.volume=34&rft.issue=1&rft.spage=47&rft.epage=67&rft.pages=47-67&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-020-9390-7&rft_dat=%3Cproquest_cross%3E2486174879%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-458fbef52ea5e2f3bb4a4884c2015983a6e24ff1f6b3f9da525442339924a4d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2486174879&rft_id=info:pmid/&rfr_iscdi=true |