Loading…
Automatic operational modal analysis of structures based on image recognition of stabilization diagrams with uncertainty quantification
A novel automatic operational modal analysis method is proposed based on the image recognition of stabilization diagrams with uncertainty quantification. The method not only enriches the contents of the stabilization diagrams to make them much clearer—it can also avoid heavy manual analysis of the s...
Saved in:
Published in: | Multidimensional systems and signal processing 2021, Vol.32 (1), p.335-357 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel automatic operational modal analysis method is proposed based on the image recognition of stabilization diagrams with uncertainty quantification. The method not only enriches the contents of the stabilization diagrams to make them much clearer—it can also avoid heavy manual analysis of the stabilization diagrams by automatically obtaining operational modal parameters. In order to increase the efficiency in identifying modal parameters of structures, a traditional stabilization diagram is re-constructed to convey the uncertainty estimates. These stabilization diagrams are then resolved into single mode stabilization diagrams (SMSDs) with a specified frequency interval, for image recognition. Subsequently, a convolutional neural network (CNN) is adopted to automatically analyze the SMSDs. In this study, the CNN is trained by the SMSDs derived from the stabilization diagrams of two numerical examples and three engineering structures. The trained CNN is then validated with a 6 degree-of-freedom model, the Heritage Court Tower building, and the Ting Kau Bridge. The robust learning and prediction results establish that the constructed CNN is effective for analyzing the stabilization diagrams of different structures. It can automatically and accurately identify the physical modes on the stabilization diagrams, without extracting any characteristic parameters. |
---|---|
ISSN: | 0923-6082 1573-0824 |
DOI: | 10.1007/s11045-020-00741-0 |