Loading…
Semirelativistic Choquard equations with singular potentials and general nonlinearities arising from Hartree-Fock theory
We are interested in the general Choquard equation \begin{multline*} \sqrt{\strut -\Delta + m^2} \ u - mu + V(x)u - \frac{\mu}{|x|} u = \left( \int_{\mathbb{R}^N} \frac{F(y,u(y))}{|x-y|^{N-\alpha}} \, dy \right) f(x,u) - K (x) |u|^{q-2}u \end{multline*} under suitable assumptions on the bounded pote...
Saved in:
Published in: | arXiv.org 2021-02 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bernini, Federico Bieganowski, Bartosz Secchi, Simone |
description | We are interested in the general Choquard equation \begin{multline*} \sqrt{\strut -\Delta + m^2} \ u - mu + V(x)u - \frac{\mu}{|x|} u = \left( \int_{\mathbb{R}^N} \frac{F(y,u(y))}{|x-y|^{N-\alpha}} \, dy \right) f(x,u) - K (x) |u|^{q-2}u \end{multline*} under suitable assumptions on the bounded potential \(V\) and on the nonlinearity \(f\). Our analysis extends recent results by the second and third author on the problem with \(\mu = 0\) and pure-power nonlinearity \(f(x,u)=|u|^{p-2}u\). We show that, under appropriate assumptions on the potential, whether the ground state does exist or not. Finally, we study the asymptotic behaviour of ground states as \(\mu \to 0^+\). |
doi_str_mv | 10.48550/arxiv.2102.02168 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2486331289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486331289</sourcerecordid><originalsourceid>FETCH-LOGICAL-a958-4e85ee8e76f1cf8e0e4f0eba5f99229916178ae1e31c3941c377653c142ab5103</originalsourceid><addsrcrecordid>eNotUMFOAjEUbExMJMgHeGviebF9bXfboyEiJiQe5E7K8haKS4ttF_HvrcHLzGEyM5kh5IGzqdRKsScbL-48Bc5gyoDX-oaMQAheaQlwRyYpHRhjUDeglBiRywceXcTeZnd2KbuWzvbha7BxS7FQdsEn-u3ynibnd0NvIz2FjD472ydq_Zbu0GO0PfXB986jjS47LFJ0fw7axXCkCxtzRKzmof2keY8h_tyT265E4OSfx2Q1f1nNFtXy_fVt9rysrFG6kqgVosam7njbaWQoO4YbqzpjAIzhNW-0RY6Ct8LIAk1TK9FyCXajOBNj8niNPcUyC1NeH8IQfWlcg9R1OQa0Eb9mE2DE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486331289</pqid></control><display><type>article</type><title>Semirelativistic Choquard equations with singular potentials and general nonlinearities arising from Hartree-Fock theory</title><source>Publicly Available Content Database</source><creator>Bernini, Federico ; Bieganowski, Bartosz ; Secchi, Simone</creator><creatorcontrib>Bernini, Federico ; Bieganowski, Bartosz ; Secchi, Simone</creatorcontrib><description>We are interested in the general Choquard equation \begin{multline*} \sqrt{\strut -\Delta + m^2} \ u - mu + V(x)u - \frac{\mu}{|x|} u = \left( \int_{\mathbb{R}^N} \frac{F(y,u(y))}{|x-y|^{N-\alpha}} \, dy \right) f(x,u) - K (x) |u|^{q-2}u \end{multline*} under suitable assumptions on the bounded potential \(V\) and on the nonlinearity \(f\). Our analysis extends recent results by the second and third author on the problem with \(\mu = 0\) and pure-power nonlinearity \(f(x,u)=|u|^{p-2}u\). We show that, under appropriate assumptions on the potential, whether the ground state does exist or not. Finally, we study the asymptotic behaviour of ground states as \(\mu \to 0^+\).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2102.02168</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Ground state ; Nonlinearity</subject><ispartof>arXiv.org, 2021-02</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2486331289?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Bernini, Federico</creatorcontrib><creatorcontrib>Bieganowski, Bartosz</creatorcontrib><creatorcontrib>Secchi, Simone</creatorcontrib><title>Semirelativistic Choquard equations with singular potentials and general nonlinearities arising from Hartree-Fock theory</title><title>arXiv.org</title><description>We are interested in the general Choquard equation \begin{multline*} \sqrt{\strut -\Delta + m^2} \ u - mu + V(x)u - \frac{\mu}{|x|} u = \left( \int_{\mathbb{R}^N} \frac{F(y,u(y))}{|x-y|^{N-\alpha}} \, dy \right) f(x,u) - K (x) |u|^{q-2}u \end{multline*} under suitable assumptions on the bounded potential \(V\) and on the nonlinearity \(f\). Our analysis extends recent results by the second and third author on the problem with \(\mu = 0\) and pure-power nonlinearity \(f(x,u)=|u|^{p-2}u\). We show that, under appropriate assumptions on the potential, whether the ground state does exist or not. Finally, we study the asymptotic behaviour of ground states as \(\mu \to 0^+\).</description><subject>Asymptotic properties</subject><subject>Ground state</subject><subject>Nonlinearity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotUMFOAjEUbExMJMgHeGviebF9bXfboyEiJiQe5E7K8haKS4ttF_HvrcHLzGEyM5kh5IGzqdRKsScbL-48Bc5gyoDX-oaMQAheaQlwRyYpHRhjUDeglBiRywceXcTeZnd2KbuWzvbha7BxS7FQdsEn-u3ynibnd0NvIz2FjD472ydq_Zbu0GO0PfXB986jjS47LFJ0fw7axXCkCxtzRKzmof2keY8h_tyT265E4OSfx2Q1f1nNFtXy_fVt9rysrFG6kqgVosam7njbaWQoO4YbqzpjAIzhNW-0RY6Ct8LIAk1TK9FyCXajOBNj8niNPcUyC1NeH8IQfWlcg9R1OQa0Eb9mE2DE</recordid><startdate>20210203</startdate><enddate>20210203</enddate><creator>Bernini, Federico</creator><creator>Bieganowski, Bartosz</creator><creator>Secchi, Simone</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210203</creationdate><title>Semirelativistic Choquard equations with singular potentials and general nonlinearities arising from Hartree-Fock theory</title><author>Bernini, Federico ; Bieganowski, Bartosz ; Secchi, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a958-4e85ee8e76f1cf8e0e4f0eba5f99229916178ae1e31c3941c377653c142ab5103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Ground state</topic><topic>Nonlinearity</topic><toplevel>online_resources</toplevel><creatorcontrib>Bernini, Federico</creatorcontrib><creatorcontrib>Bieganowski, Bartosz</creatorcontrib><creatorcontrib>Secchi, Simone</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernini, Federico</au><au>Bieganowski, Bartosz</au><au>Secchi, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semirelativistic Choquard equations with singular potentials and general nonlinearities arising from Hartree-Fock theory</atitle><jtitle>arXiv.org</jtitle><date>2021-02-03</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We are interested in the general Choquard equation \begin{multline*} \sqrt{\strut -\Delta + m^2} \ u - mu + V(x)u - \frac{\mu}{|x|} u = \left( \int_{\mathbb{R}^N} \frac{F(y,u(y))}{|x-y|^{N-\alpha}} \, dy \right) f(x,u) - K (x) |u|^{q-2}u \end{multline*} under suitable assumptions on the bounded potential \(V\) and on the nonlinearity \(f\). Our analysis extends recent results by the second and third author on the problem with \(\mu = 0\) and pure-power nonlinearity \(f(x,u)=|u|^{p-2}u\). We show that, under appropriate assumptions on the potential, whether the ground state does exist or not. Finally, we study the asymptotic behaviour of ground states as \(\mu \to 0^+\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2102.02168</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2486331289 |
source | Publicly Available Content Database |
subjects | Asymptotic properties Ground state Nonlinearity |
title | Semirelativistic Choquard equations with singular potentials and general nonlinearities arising from Hartree-Fock theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semirelativistic%20Choquard%20equations%20with%20singular%20potentials%20and%20general%20nonlinearities%20arising%20from%20Hartree-Fock%20theory&rft.jtitle=arXiv.org&rft.au=Bernini,%20Federico&rft.date=2021-02-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2102.02168&rft_dat=%3Cproquest%3E2486331289%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a958-4e85ee8e76f1cf8e0e4f0eba5f99229916178ae1e31c3941c377653c142ab5103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2486331289&rft_id=info:pmid/&rfr_iscdi=true |