Loading…

Unusual Effect of Support Carbonization on the Structure and Performance of Fe/Mgal2o4 Fischer–Tropsch Catalyst

Carbonization of MgAl2O4 spinel via glucose treatment is applied for preparation of spinel‐supported iron Fischer–Tropsch synthesis (FTS) catalysts. The catalysts are characterized by low‐temperature adsorption of N2, transmission electron microscopy (TEM), Mössbauer spectroscopy, in situ magnitomet...

Full description

Saved in:
Bibliographic Details
Published in:Energy technology (Weinheim, Germany) Germany), 2021-02, Vol.9 (2), p.n/a
Main Authors: Chernavskii, Petr A., Kazantsev, Ruslan V., Pankina, Galina V., Pankratov, Denis A., Maksimov, Sergey V., Eliseev, Oleg L.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 2
container_start_page
container_title Energy technology (Weinheim, Germany)
container_volume 9
creator Chernavskii, Petr A.
Kazantsev, Ruslan V.
Pankina, Galina V.
Pankratov, Denis A.
Maksimov, Sergey V.
Eliseev, Oleg L.
description Carbonization of MgAl2O4 spinel via glucose treatment is applied for preparation of spinel‐supported iron Fischer–Tropsch synthesis (FTS) catalysts. The catalysts are characterized by low‐temperature adsorption of N2, transmission electron microscopy (TEM), Mössbauer spectroscopy, in situ magnitometry, and are tested in high‐temperature FTS conditions. Surface carbonization leads to magnetite formation in the course of catalyst calcining, likely due to reductive function of surface carbon. In contrast, hematite is formed if iron precursor is deposited on pristine spinel. Support carbonization facilitates iron precursor reduction into carbide during catalyst activation step in synthesis gas flow and gives rise to highly dispersed iron nanopartilcles. Comparison of sequential and co‐impregnation approaches for support carbonization reveal that the first is preferable in terms of Hägg carbide formation during catalyst activation. Specific activity of the catalysts in high‐temperature FTS is approximately doubled due to the support carbonization. The carbonization also boosts C5+ selectivity and olefin percentage in the product hydrocarbons, while methane formation is suppressed. Adding potassium to catalyst formulation suppresses iron carbide oxidation and Fe3O4 formation, and promotes conversion of χ‐Fe5C2 into θ‐Fe7C3 in FTS conditions. Carbonization of MgAl2O4 spinel support via glucose treatment greatly enhances catalytic performance of Fe/MgAl2O4 Fischer–Tropsch synthesis catalysts.
doi_str_mv 10.1002/ente.202000877
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2486446442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486446442</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1857-4409fe65695c98248dce60debe116c7378cb92d135eb4c08bbea38c33527a5263</originalsourceid><addsrcrecordid>eNo9kM1qwkAUhYfSQsW67Xqga3X-kkyWRWJbsD-grofJ5EYjMRMnE4pd9R36hn2SjliEA_dcOPdc-BC6p2RCCWFTaDxMGGGEEJkkV2jAaCrGgqXx9cVLeYtGXbcLGUoiHhE-QId103e9rnFWlmA8tiVe9m1rnccz7XLbVF_aV7bBQX4LeOldb3zvAOumwB_gSuv2ujFwupzD9HWja2YFnled2YL7_f5ZOdsGH-q8ro-dv0M3pa47GP3PIVrPs9Xsebx4f3qZPS7GGyqjZCwESUuIoziNTCqZkIWBmBSQA6WxSXgiTZ6ygvIIcmGIzHPQXBrOI5boiMV8iB7Ova2zhx46r3a2d014qUJbLEQQC6n0nPqsajiq1lV77Y6KEnXCqk5Y1QWryt5W2WXjfxCqb08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486446442</pqid></control><display><type>article</type><title>Unusual Effect of Support Carbonization on the Structure and Performance of Fe/Mgal2o4 Fischer–Tropsch Catalyst</title><source>Wiley</source><creator>Chernavskii, Petr A. ; Kazantsev, Ruslan V. ; Pankina, Galina V. ; Pankratov, Denis A. ; Maksimov, Sergey V. ; Eliseev, Oleg L.</creator><creatorcontrib>Chernavskii, Petr A. ; Kazantsev, Ruslan V. ; Pankina, Galina V. ; Pankratov, Denis A. ; Maksimov, Sergey V. ; Eliseev, Oleg L.</creatorcontrib><description>Carbonization of MgAl2O4 spinel via glucose treatment is applied for preparation of spinel‐supported iron Fischer–Tropsch synthesis (FTS) catalysts. The catalysts are characterized by low‐temperature adsorption of N2, transmission electron microscopy (TEM), Mössbauer spectroscopy, in situ magnitometry, and are tested in high‐temperature FTS conditions. Surface carbonization leads to magnetite formation in the course of catalyst calcining, likely due to reductive function of surface carbon. In contrast, hematite is formed if iron precursor is deposited on pristine spinel. Support carbonization facilitates iron precursor reduction into carbide during catalyst activation step in synthesis gas flow and gives rise to highly dispersed iron nanopartilcles. Comparison of sequential and co‐impregnation approaches for support carbonization reveal that the first is preferable in terms of Hägg carbide formation during catalyst activation. Specific activity of the catalysts in high‐temperature FTS is approximately doubled due to the support carbonization. The carbonization also boosts C5+ selectivity and olefin percentage in the product hydrocarbons, while methane formation is suppressed. Adding potassium to catalyst formulation suppresses iron carbide oxidation and Fe3O4 formation, and promotes conversion of χ‐Fe5C2 into θ‐Fe7C3 in FTS conditions. Carbonization of MgAl2O4 spinel support via glucose treatment greatly enhances catalytic performance of Fe/MgAl2O4 Fischer–Tropsch synthesis catalysts.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202000877</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbonization ; Catalysts ; Fischer-Tropsch process ; Fischer−Tropsch synthesis ; Gas flow ; Hematite ; Iron carbides ; iron catalysts ; Iron oxides ; Mossbauer spectroscopy ; Oxidation ; Potassium ; Precursors ; Selectivity ; Spinel ; spinel support ; Synthesis gas ; Temperature</subject><ispartof>Energy technology (Weinheim, Germany), 2021-02, Vol.9 (2), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1052-9237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chernavskii, Petr A.</creatorcontrib><creatorcontrib>Kazantsev, Ruslan V.</creatorcontrib><creatorcontrib>Pankina, Galina V.</creatorcontrib><creatorcontrib>Pankratov, Denis A.</creatorcontrib><creatorcontrib>Maksimov, Sergey V.</creatorcontrib><creatorcontrib>Eliseev, Oleg L.</creatorcontrib><title>Unusual Effect of Support Carbonization on the Structure and Performance of Fe/Mgal2o4 Fischer–Tropsch Catalyst</title><title>Energy technology (Weinheim, Germany)</title><description>Carbonization of MgAl2O4 spinel via glucose treatment is applied for preparation of spinel‐supported iron Fischer–Tropsch synthesis (FTS) catalysts. The catalysts are characterized by low‐temperature adsorption of N2, transmission electron microscopy (TEM), Mössbauer spectroscopy, in situ magnitometry, and are tested in high‐temperature FTS conditions. Surface carbonization leads to magnetite formation in the course of catalyst calcining, likely due to reductive function of surface carbon. In contrast, hematite is formed if iron precursor is deposited on pristine spinel. Support carbonization facilitates iron precursor reduction into carbide during catalyst activation step in synthesis gas flow and gives rise to highly dispersed iron nanopartilcles. Comparison of sequential and co‐impregnation approaches for support carbonization reveal that the first is preferable in terms of Hägg carbide formation during catalyst activation. Specific activity of the catalysts in high‐temperature FTS is approximately doubled due to the support carbonization. The carbonization also boosts C5+ selectivity and olefin percentage in the product hydrocarbons, while methane formation is suppressed. Adding potassium to catalyst formulation suppresses iron carbide oxidation and Fe3O4 formation, and promotes conversion of χ‐Fe5C2 into θ‐Fe7C3 in FTS conditions. Carbonization of MgAl2O4 spinel support via glucose treatment greatly enhances catalytic performance of Fe/MgAl2O4 Fischer–Tropsch synthesis catalysts.</description><subject>Carbonization</subject><subject>Catalysts</subject><subject>Fischer-Tropsch process</subject><subject>Fischer−Tropsch synthesis</subject><subject>Gas flow</subject><subject>Hematite</subject><subject>Iron carbides</subject><subject>iron catalysts</subject><subject>Iron oxides</subject><subject>Mossbauer spectroscopy</subject><subject>Oxidation</subject><subject>Potassium</subject><subject>Precursors</subject><subject>Selectivity</subject><subject>Spinel</subject><subject>spinel support</subject><subject>Synthesis gas</subject><subject>Temperature</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1qwkAUhYfSQsW67Xqga3X-kkyWRWJbsD-grofJ5EYjMRMnE4pd9R36hn2SjliEA_dcOPdc-BC6p2RCCWFTaDxMGGGEEJkkV2jAaCrGgqXx9cVLeYtGXbcLGUoiHhE-QId103e9rnFWlmA8tiVe9m1rnccz7XLbVF_aV7bBQX4LeOldb3zvAOumwB_gSuv2ujFwupzD9HWja2YFnled2YL7_f5ZOdsGH-q8ro-dv0M3pa47GP3PIVrPs9Xsebx4f3qZPS7GGyqjZCwESUuIoziNTCqZkIWBmBSQA6WxSXgiTZ6ygvIIcmGIzHPQXBrOI5boiMV8iB7Ova2zhx46r3a2d014qUJbLEQQC6n0nPqsajiq1lV77Y6KEnXCqk5Y1QWryt5W2WXjfxCqb08</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Chernavskii, Petr A.</creator><creator>Kazantsev, Ruslan V.</creator><creator>Pankina, Galina V.</creator><creator>Pankratov, Denis A.</creator><creator>Maksimov, Sergey V.</creator><creator>Eliseev, Oleg L.</creator><general>Wiley Subscription Services, Inc</general><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1052-9237</orcidid></search><sort><creationdate>202102</creationdate><title>Unusual Effect of Support Carbonization on the Structure and Performance of Fe/Mgal2o4 Fischer–Tropsch Catalyst</title><author>Chernavskii, Petr A. ; Kazantsev, Ruslan V. ; Pankina, Galina V. ; Pankratov, Denis A. ; Maksimov, Sergey V. ; Eliseev, Oleg L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1857-4409fe65695c98248dce60debe116c7378cb92d135eb4c08bbea38c33527a5263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbonization</topic><topic>Catalysts</topic><topic>Fischer-Tropsch process</topic><topic>Fischer−Tropsch synthesis</topic><topic>Gas flow</topic><topic>Hematite</topic><topic>Iron carbides</topic><topic>iron catalysts</topic><topic>Iron oxides</topic><topic>Mossbauer spectroscopy</topic><topic>Oxidation</topic><topic>Potassium</topic><topic>Precursors</topic><topic>Selectivity</topic><topic>Spinel</topic><topic>spinel support</topic><topic>Synthesis gas</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernavskii, Petr A.</creatorcontrib><creatorcontrib>Kazantsev, Ruslan V.</creatorcontrib><creatorcontrib>Pankina, Galina V.</creatorcontrib><creatorcontrib>Pankratov, Denis A.</creatorcontrib><creatorcontrib>Maksimov, Sergey V.</creatorcontrib><creatorcontrib>Eliseev, Oleg L.</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernavskii, Petr A.</au><au>Kazantsev, Ruslan V.</au><au>Pankina, Galina V.</au><au>Pankratov, Denis A.</au><au>Maksimov, Sergey V.</au><au>Eliseev, Oleg L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unusual Effect of Support Carbonization on the Structure and Performance of Fe/Mgal2o4 Fischer–Tropsch Catalyst</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2021-02</date><risdate>2021</risdate><volume>9</volume><issue>2</issue><epage>n/a</epage><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Carbonization of MgAl2O4 spinel via glucose treatment is applied for preparation of spinel‐supported iron Fischer–Tropsch synthesis (FTS) catalysts. The catalysts are characterized by low‐temperature adsorption of N2, transmission electron microscopy (TEM), Mössbauer spectroscopy, in situ magnitometry, and are tested in high‐temperature FTS conditions. Surface carbonization leads to magnetite formation in the course of catalyst calcining, likely due to reductive function of surface carbon. In contrast, hematite is formed if iron precursor is deposited on pristine spinel. Support carbonization facilitates iron precursor reduction into carbide during catalyst activation step in synthesis gas flow and gives rise to highly dispersed iron nanopartilcles. Comparison of sequential and co‐impregnation approaches for support carbonization reveal that the first is preferable in terms of Hägg carbide formation during catalyst activation. Specific activity of the catalysts in high‐temperature FTS is approximately doubled due to the support carbonization. The carbonization also boosts C5+ selectivity and olefin percentage in the product hydrocarbons, while methane formation is suppressed. Adding potassium to catalyst formulation suppresses iron carbide oxidation and Fe3O4 formation, and promotes conversion of χ‐Fe5C2 into θ‐Fe7C3 in FTS conditions. Carbonization of MgAl2O4 spinel support via glucose treatment greatly enhances catalytic performance of Fe/MgAl2O4 Fischer–Tropsch synthesis catalysts.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.202000877</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1052-9237</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2021-02, Vol.9 (2), p.n/a
issn 2194-4288
2194-4296
language eng
recordid cdi_proquest_journals_2486446442
source Wiley
subjects Carbonization
Catalysts
Fischer-Tropsch process
Fischer−Tropsch synthesis
Gas flow
Hematite
Iron carbides
iron catalysts
Iron oxides
Mossbauer spectroscopy
Oxidation
Potassium
Precursors
Selectivity
Spinel
spinel support
Synthesis gas
Temperature
title Unusual Effect of Support Carbonization on the Structure and Performance of Fe/Mgal2o4 Fischer–Tropsch Catalyst
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unusual%20Effect%20of%20Support%20Carbonization%20on%20the%20Structure%20and%20Performance%20of%20Fe/Mgal2o4%20Fischer%E2%80%93Tropsch%20Catalyst&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Chernavskii,%20Petr%20A.&rft.date=2021-02&rft.volume=9&rft.issue=2&rft.epage=n/a&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202000877&rft_dat=%3Cproquest_wiley%3E2486446442%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g1857-4409fe65695c98248dce60debe116c7378cb92d135eb4c08bbea38c33527a5263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2486446442&rft_id=info:pmid/&rfr_iscdi=true