Loading…
Unusual Effect of Support Carbonization on the Structure and Performance of Fe/Mgal2o4 Fischer–Tropsch Catalyst
Carbonization of MgAl2O4 spinel via glucose treatment is applied for preparation of spinel‐supported iron Fischer–Tropsch synthesis (FTS) catalysts. The catalysts are characterized by low‐temperature adsorption of N2, transmission electron microscopy (TEM), Mössbauer spectroscopy, in situ magnitomet...
Saved in:
Published in: | Energy technology (Weinheim, Germany) Germany), 2021-02, Vol.9 (2), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 2 |
container_start_page | |
container_title | Energy technology (Weinheim, Germany) |
container_volume | 9 |
creator | Chernavskii, Petr A. Kazantsev, Ruslan V. Pankina, Galina V. Pankratov, Denis A. Maksimov, Sergey V. Eliseev, Oleg L. |
description | Carbonization of MgAl2O4 spinel via glucose treatment is applied for preparation of spinel‐supported iron Fischer–Tropsch synthesis (FTS) catalysts. The catalysts are characterized by low‐temperature adsorption of N2, transmission electron microscopy (TEM), Mössbauer spectroscopy, in situ magnitometry, and are tested in high‐temperature FTS conditions. Surface carbonization leads to magnetite formation in the course of catalyst calcining, likely due to reductive function of surface carbon. In contrast, hematite is formed if iron precursor is deposited on pristine spinel. Support carbonization facilitates iron precursor reduction into carbide during catalyst activation step in synthesis gas flow and gives rise to highly dispersed iron nanopartilcles. Comparison of sequential and co‐impregnation approaches for support carbonization reveal that the first is preferable in terms of Hägg carbide formation during catalyst activation. Specific activity of the catalysts in high‐temperature FTS is approximately doubled due to the support carbonization. The carbonization also boosts C5+ selectivity and olefin percentage in the product hydrocarbons, while methane formation is suppressed. Adding potassium to catalyst formulation suppresses iron carbide oxidation and Fe3O4 formation, and promotes conversion of χ‐Fe5C2 into θ‐Fe7C3 in FTS conditions.
Carbonization of MgAl2O4 spinel support via glucose treatment greatly enhances catalytic performance of Fe/MgAl2O4 Fischer–Tropsch synthesis catalysts. |
doi_str_mv | 10.1002/ente.202000877 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2486446442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486446442</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1857-4409fe65695c98248dce60debe116c7378cb92d135eb4c08bbea38c33527a5263</originalsourceid><addsrcrecordid>eNo9kM1qwkAUhYfSQsW67Xqga3X-kkyWRWJbsD-grofJ5EYjMRMnE4pd9R36hn2SjliEA_dcOPdc-BC6p2RCCWFTaDxMGGGEEJkkV2jAaCrGgqXx9cVLeYtGXbcLGUoiHhE-QId103e9rnFWlmA8tiVe9m1rnccz7XLbVF_aV7bBQX4LeOldb3zvAOumwB_gSuv2ujFwupzD9HWja2YFnled2YL7_f5ZOdsGH-q8ro-dv0M3pa47GP3PIVrPs9Xsebx4f3qZPS7GGyqjZCwESUuIoziNTCqZkIWBmBSQA6WxSXgiTZ6ygvIIcmGIzHPQXBrOI5boiMV8iB7Ova2zhx46r3a2d014qUJbLEQQC6n0nPqsajiq1lV77Y6KEnXCqk5Y1QWryt5W2WXjfxCqb08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486446442</pqid></control><display><type>article</type><title>Unusual Effect of Support Carbonization on the Structure and Performance of Fe/Mgal2o4 Fischer–Tropsch Catalyst</title><source>Wiley</source><creator>Chernavskii, Petr A. ; Kazantsev, Ruslan V. ; Pankina, Galina V. ; Pankratov, Denis A. ; Maksimov, Sergey V. ; Eliseev, Oleg L.</creator><creatorcontrib>Chernavskii, Petr A. ; Kazantsev, Ruslan V. ; Pankina, Galina V. ; Pankratov, Denis A. ; Maksimov, Sergey V. ; Eliseev, Oleg L.</creatorcontrib><description>Carbonization of MgAl2O4 spinel via glucose treatment is applied for preparation of spinel‐supported iron Fischer–Tropsch synthesis (FTS) catalysts. The catalysts are characterized by low‐temperature adsorption of N2, transmission electron microscopy (TEM), Mössbauer spectroscopy, in situ magnitometry, and are tested in high‐temperature FTS conditions. Surface carbonization leads to magnetite formation in the course of catalyst calcining, likely due to reductive function of surface carbon. In contrast, hematite is formed if iron precursor is deposited on pristine spinel. Support carbonization facilitates iron precursor reduction into carbide during catalyst activation step in synthesis gas flow and gives rise to highly dispersed iron nanopartilcles. Comparison of sequential and co‐impregnation approaches for support carbonization reveal that the first is preferable in terms of Hägg carbide formation during catalyst activation. Specific activity of the catalysts in high‐temperature FTS is approximately doubled due to the support carbonization. The carbonization also boosts C5+ selectivity and olefin percentage in the product hydrocarbons, while methane formation is suppressed. Adding potassium to catalyst formulation suppresses iron carbide oxidation and Fe3O4 formation, and promotes conversion of χ‐Fe5C2 into θ‐Fe7C3 in FTS conditions.
Carbonization of MgAl2O4 spinel support via glucose treatment greatly enhances catalytic performance of Fe/MgAl2O4 Fischer–Tropsch synthesis catalysts.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202000877</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbonization ; Catalysts ; Fischer-Tropsch process ; Fischer−Tropsch synthesis ; Gas flow ; Hematite ; Iron carbides ; iron catalysts ; Iron oxides ; Mossbauer spectroscopy ; Oxidation ; Potassium ; Precursors ; Selectivity ; Spinel ; spinel support ; Synthesis gas ; Temperature</subject><ispartof>Energy technology (Weinheim, Germany), 2021-02, Vol.9 (2), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1052-9237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chernavskii, Petr A.</creatorcontrib><creatorcontrib>Kazantsev, Ruslan V.</creatorcontrib><creatorcontrib>Pankina, Galina V.</creatorcontrib><creatorcontrib>Pankratov, Denis A.</creatorcontrib><creatorcontrib>Maksimov, Sergey V.</creatorcontrib><creatorcontrib>Eliseev, Oleg L.</creatorcontrib><title>Unusual Effect of Support Carbonization on the Structure and Performance of Fe/Mgal2o4 Fischer–Tropsch Catalyst</title><title>Energy technology (Weinheim, Germany)</title><description>Carbonization of MgAl2O4 spinel via glucose treatment is applied for preparation of spinel‐supported iron Fischer–Tropsch synthesis (FTS) catalysts. The catalysts are characterized by low‐temperature adsorption of N2, transmission electron microscopy (TEM), Mössbauer spectroscopy, in situ magnitometry, and are tested in high‐temperature FTS conditions. Surface carbonization leads to magnetite formation in the course of catalyst calcining, likely due to reductive function of surface carbon. In contrast, hematite is formed if iron precursor is deposited on pristine spinel. Support carbonization facilitates iron precursor reduction into carbide during catalyst activation step in synthesis gas flow and gives rise to highly dispersed iron nanopartilcles. Comparison of sequential and co‐impregnation approaches for support carbonization reveal that the first is preferable in terms of Hägg carbide formation during catalyst activation. Specific activity of the catalysts in high‐temperature FTS is approximately doubled due to the support carbonization. The carbonization also boosts C5+ selectivity and olefin percentage in the product hydrocarbons, while methane formation is suppressed. Adding potassium to catalyst formulation suppresses iron carbide oxidation and Fe3O4 formation, and promotes conversion of χ‐Fe5C2 into θ‐Fe7C3 in FTS conditions.
Carbonization of MgAl2O4 spinel support via glucose treatment greatly enhances catalytic performance of Fe/MgAl2O4 Fischer–Tropsch synthesis catalysts.</description><subject>Carbonization</subject><subject>Catalysts</subject><subject>Fischer-Tropsch process</subject><subject>Fischer−Tropsch synthesis</subject><subject>Gas flow</subject><subject>Hematite</subject><subject>Iron carbides</subject><subject>iron catalysts</subject><subject>Iron oxides</subject><subject>Mossbauer spectroscopy</subject><subject>Oxidation</subject><subject>Potassium</subject><subject>Precursors</subject><subject>Selectivity</subject><subject>Spinel</subject><subject>spinel support</subject><subject>Synthesis gas</subject><subject>Temperature</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1qwkAUhYfSQsW67Xqga3X-kkyWRWJbsD-grofJ5EYjMRMnE4pd9R36hn2SjliEA_dcOPdc-BC6p2RCCWFTaDxMGGGEEJkkV2jAaCrGgqXx9cVLeYtGXbcLGUoiHhE-QId103e9rnFWlmA8tiVe9m1rnccz7XLbVF_aV7bBQX4LeOldb3zvAOumwB_gSuv2ujFwupzD9HWja2YFnled2YL7_f5ZOdsGH-q8ro-dv0M3pa47GP3PIVrPs9Xsebx4f3qZPS7GGyqjZCwESUuIoziNTCqZkIWBmBSQA6WxSXgiTZ6ygvIIcmGIzHPQXBrOI5boiMV8iB7Ova2zhx46r3a2d014qUJbLEQQC6n0nPqsajiq1lV77Y6KEnXCqk5Y1QWryt5W2WXjfxCqb08</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Chernavskii, Petr A.</creator><creator>Kazantsev, Ruslan V.</creator><creator>Pankina, Galina V.</creator><creator>Pankratov, Denis A.</creator><creator>Maksimov, Sergey V.</creator><creator>Eliseev, Oleg L.</creator><general>Wiley Subscription Services, Inc</general><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1052-9237</orcidid></search><sort><creationdate>202102</creationdate><title>Unusual Effect of Support Carbonization on the Structure and Performance of Fe/Mgal2o4 Fischer–Tropsch Catalyst</title><author>Chernavskii, Petr A. ; Kazantsev, Ruslan V. ; Pankina, Galina V. ; Pankratov, Denis A. ; Maksimov, Sergey V. ; Eliseev, Oleg L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1857-4409fe65695c98248dce60debe116c7378cb92d135eb4c08bbea38c33527a5263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbonization</topic><topic>Catalysts</topic><topic>Fischer-Tropsch process</topic><topic>Fischer−Tropsch synthesis</topic><topic>Gas flow</topic><topic>Hematite</topic><topic>Iron carbides</topic><topic>iron catalysts</topic><topic>Iron oxides</topic><topic>Mossbauer spectroscopy</topic><topic>Oxidation</topic><topic>Potassium</topic><topic>Precursors</topic><topic>Selectivity</topic><topic>Spinel</topic><topic>spinel support</topic><topic>Synthesis gas</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernavskii, Petr A.</creatorcontrib><creatorcontrib>Kazantsev, Ruslan V.</creatorcontrib><creatorcontrib>Pankina, Galina V.</creatorcontrib><creatorcontrib>Pankratov, Denis A.</creatorcontrib><creatorcontrib>Maksimov, Sergey V.</creatorcontrib><creatorcontrib>Eliseev, Oleg L.</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernavskii, Petr A.</au><au>Kazantsev, Ruslan V.</au><au>Pankina, Galina V.</au><au>Pankratov, Denis A.</au><au>Maksimov, Sergey V.</au><au>Eliseev, Oleg L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unusual Effect of Support Carbonization on the Structure and Performance of Fe/Mgal2o4 Fischer–Tropsch Catalyst</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2021-02</date><risdate>2021</risdate><volume>9</volume><issue>2</issue><epage>n/a</epage><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Carbonization of MgAl2O4 spinel via glucose treatment is applied for preparation of spinel‐supported iron Fischer–Tropsch synthesis (FTS) catalysts. The catalysts are characterized by low‐temperature adsorption of N2, transmission electron microscopy (TEM), Mössbauer spectroscopy, in situ magnitometry, and are tested in high‐temperature FTS conditions. Surface carbonization leads to magnetite formation in the course of catalyst calcining, likely due to reductive function of surface carbon. In contrast, hematite is formed if iron precursor is deposited on pristine spinel. Support carbonization facilitates iron precursor reduction into carbide during catalyst activation step in synthesis gas flow and gives rise to highly dispersed iron nanopartilcles. Comparison of sequential and co‐impregnation approaches for support carbonization reveal that the first is preferable in terms of Hägg carbide formation during catalyst activation. Specific activity of the catalysts in high‐temperature FTS is approximately doubled due to the support carbonization. The carbonization also boosts C5+ selectivity and olefin percentage in the product hydrocarbons, while methane formation is suppressed. Adding potassium to catalyst formulation suppresses iron carbide oxidation and Fe3O4 formation, and promotes conversion of χ‐Fe5C2 into θ‐Fe7C3 in FTS conditions.
Carbonization of MgAl2O4 spinel support via glucose treatment greatly enhances catalytic performance of Fe/MgAl2O4 Fischer–Tropsch synthesis catalysts.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.202000877</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1052-9237</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-4288 |
ispartof | Energy technology (Weinheim, Germany), 2021-02, Vol.9 (2), p.n/a |
issn | 2194-4288 2194-4296 |
language | eng |
recordid | cdi_proquest_journals_2486446442 |
source | Wiley |
subjects | Carbonization Catalysts Fischer-Tropsch process Fischer−Tropsch synthesis Gas flow Hematite Iron carbides iron catalysts Iron oxides Mossbauer spectroscopy Oxidation Potassium Precursors Selectivity Spinel spinel support Synthesis gas Temperature |
title | Unusual Effect of Support Carbonization on the Structure and Performance of Fe/Mgal2o4 Fischer–Tropsch Catalyst |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unusual%20Effect%20of%20Support%20Carbonization%20on%20the%20Structure%20and%20Performance%20of%20Fe/Mgal2o4%20Fischer%E2%80%93Tropsch%20Catalyst&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Chernavskii,%20Petr%20A.&rft.date=2021-02&rft.volume=9&rft.issue=2&rft.epage=n/a&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202000877&rft_dat=%3Cproquest_wiley%3E2486446442%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g1857-4409fe65695c98248dce60debe116c7378cb92d135eb4c08bbea38c33527a5263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2486446442&rft_id=info:pmid/&rfr_iscdi=true |