Loading…
Geometric Study of Gas Behavior in a One-Dimensional Nozzle (the Case of the van Der Waals Gas)
We construct a three-component system of PDEs describing dynamics of van der Walls gas in one-dimensional nozzle. The group of conservation laws for this system is described. We also compute the Lie algebras of point symmetries and present group classification. Examples of exact invariant solutions...
Saved in:
Published in: | Lobachevskii journal of mathematics 2020-12, Vol.41 (12), p.2458-2465 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c311t-798c80ceb3af1e1b6ff8330d9d404150bd2823826c7b3649ba715ef4463bed923 |
container_end_page | 2465 |
container_issue | 12 |
container_start_page | 2458 |
container_title | Lobachevskii journal of mathematics |
container_volume | 41 |
creator | Krasil’shchik, I. S. Lychagin, V. V. |
description | We construct a three-component system of PDEs describing dynamics of van der Walls gas in one-dimensional nozzle. The group of conservation laws for this system is described. We also compute the Lie algebras of point symmetries and present group classification. Examples of exact invariant solutions are given. |
doi_str_mv | 10.1134/S1995080220120185 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486502019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486502019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-798c80ceb3af1e1b6ff8330d9d404150bd2823826c7b3649ba715ef4463bed923</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvAix5WM8lumhy11SoUe6jiMWR3Z-2WdlOTbaH99Wap4EGEgXkw33sMj5BLYLcAIr2bgdYZU4xzBnFUdkR6oEAlWkt-HHU8J939lJyFsGARlFL2iBmjW2Hr64LO2k25o66iYxvoA87ttnae1g21dNpgMqpX2ITaNXZJX91-v0R63c6RDm3AztXprW3oCD39sHYZupybc3JSRY0XP7tP3p8e34bPyWQ6fhneT5JCALTJQKtCsQJzYStAyGVVKSFYqcuUpZCxvOSKC8VlMciFTHVuB5BhlaZS5FhqLvrk6pC79u5rg6E1C7fx8ddgeKpkxmIpOlJwoArvQvBYmbWvV9bvDDDT9Wj-9Bg9_OAJkW0-0f8m_2_6Bspfcdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486502019</pqid></control><display><type>article</type><title>Geometric Study of Gas Behavior in a One-Dimensional Nozzle (the Case of the van Der Waals Gas)</title><source>Springer Nature</source><creator>Krasil’shchik, I. S. ; Lychagin, V. V.</creator><creatorcontrib>Krasil’shchik, I. S. ; Lychagin, V. V.</creatorcontrib><description>We construct a three-component system of PDEs describing dynamics of van der Walls gas in one-dimensional nozzle. The group of conservation laws for this system is described. We also compute the Lie algebras of point symmetries and present group classification. Examples of exact invariant solutions are given.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080220120185</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Conservation laws ; Geometry ; Group theory ; Lie groups ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Nozzles ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2020-12, Vol.41 (12), p.2458-2465</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-798c80ceb3af1e1b6ff8330d9d404150bd2823826c7b3649ba715ef4463bed923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Krasil’shchik, I. S.</creatorcontrib><creatorcontrib>Lychagin, V. V.</creatorcontrib><title>Geometric Study of Gas Behavior in a One-Dimensional Nozzle (the Case of the van Der Waals Gas)</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>We construct a three-component system of PDEs describing dynamics of van der Walls gas in one-dimensional nozzle. The group of conservation laws for this system is described. We also compute the Lie algebras of point symmetries and present group classification. Examples of exact invariant solutions are given.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Conservation laws</subject><subject>Geometry</subject><subject>Group theory</subject><subject>Lie groups</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nozzles</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvAix5WM8lumhy11SoUe6jiMWR3Z-2WdlOTbaH99Wap4EGEgXkw33sMj5BLYLcAIr2bgdYZU4xzBnFUdkR6oEAlWkt-HHU8J939lJyFsGARlFL2iBmjW2Hr64LO2k25o66iYxvoA87ttnae1g21dNpgMqpX2ITaNXZJX91-v0R63c6RDm3AztXprW3oCD39sHYZupybc3JSRY0XP7tP3p8e34bPyWQ6fhneT5JCALTJQKtCsQJzYStAyGVVKSFYqcuUpZCxvOSKC8VlMciFTHVuB5BhlaZS5FhqLvrk6pC79u5rg6E1C7fx8ddgeKpkxmIpOlJwoArvQvBYmbWvV9bvDDDT9Wj-9Bg9_OAJkW0-0f8m_2_6Bspfcdg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Krasil’shchik, I. S.</creator><creator>Lychagin, V. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Geometric Study of Gas Behavior in a One-Dimensional Nozzle (the Case of the van Der Waals Gas)</title><author>Krasil’shchik, I. S. ; Lychagin, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-798c80ceb3af1e1b6ff8330d9d404150bd2823826c7b3649ba715ef4463bed923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Conservation laws</topic><topic>Geometry</topic><topic>Group theory</topic><topic>Lie groups</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nozzles</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krasil’shchik, I. S.</creatorcontrib><creatorcontrib>Lychagin, V. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krasil’shchik, I. S.</au><au>Lychagin, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Study of Gas Behavior in a One-Dimensional Nozzle (the Case of the van Der Waals Gas)</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>41</volume><issue>12</issue><spage>2458</spage><epage>2465</epage><pages>2458-2465</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>We construct a three-component system of PDEs describing dynamics of van der Walls gas in one-dimensional nozzle. The group of conservation laws for this system is described. We also compute the Lie algebras of point symmetries and present group classification. Examples of exact invariant solutions are given.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080220120185</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2020-12, Vol.41 (12), p.2458-2465 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2486502019 |
source | Springer Nature |
subjects | Algebra Analysis Conservation laws Geometry Group theory Lie groups Mathematical Logic and Foundations Mathematics Mathematics and Statistics Nozzles Probability Theory and Stochastic Processes |
title | Geometric Study of Gas Behavior in a One-Dimensional Nozzle (the Case of the van Der Waals Gas) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Study%20of%20Gas%20Behavior%20in%20a%20One-Dimensional%20Nozzle%20(the%20Case%20of%20the%20van%20Der%20Waals%20Gas)&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Krasil%E2%80%99shchik,%20I.%20S.&rft.date=2020-12-01&rft.volume=41&rft.issue=12&rft.spage=2458&rft.epage=2465&rft.pages=2458-2465&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080220120185&rft_dat=%3Cproquest_cross%3E2486502019%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-798c80ceb3af1e1b6ff8330d9d404150bd2823826c7b3649ba715ef4463bed923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2486502019&rft_id=info:pmid/&rfr_iscdi=true |