Loading…

1:1 orbital resonance of circumbinary planets

The recent detection of the third planet in Kepler-47 has shown that binary stars can host several planets in circumbinary orbits. To understand the evolution of these systems we have performed two-dimensional hydrodynamic simulations of the circumbinary disc with two embedded planets for several Ke...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2019-10, Vol.630, p.L1
Main Authors: Penzlin, Anna B. T., Ataiee, Sareh, Kley, Wilhelm
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The recent detection of the third planet in Kepler-47 has shown that binary stars can host several planets in circumbinary orbits. To understand the evolution of these systems we have performed two-dimensional hydrodynamic simulations of the circumbinary disc with two embedded planets for several Kepler systems. In two cases, Kepler-47 and -413, the planets are captured in a 1:1 mean-motion resonance at the planet “parking position” near the inner edge of the disc. The orbits are fully aligned and have mean eccentricities of about 0.25 to 0.30; the planets are entangled in a horseshoe-type motion. Subsequent n-body simulations without the disc show that the configurations are stable. Our results point to the existence of a new class of stable resonant orbits around binary stars. It remains to be seen if such orbits exist in reality.
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361/201936478