Loading…

Incorporating astrochemistry into molecular line modelling via emulation

In studies of the interstellar medium in galaxies, radiative transfer models of molecular emission are useful for relating molecular line observations back to the physical conditions of the gas they trace. However, doing this requires solving a highly degenerate inverse problem. In order to alleviat...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2019-10, Vol.630, p.A117
Main Authors: de Mijolla, D., Viti, S., Holdship, J., Manolopoulou, I., Yates, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-e97d0bea1accf71523f54c8b7bc6a381f65b07b170cb9f1b5e2fbcdc022bdcf73
cites cdi_FETCH-LOGICAL-c360t-e97d0bea1accf71523f54c8b7bc6a381f65b07b170cb9f1b5e2fbcdc022bdcf73
container_end_page
container_issue
container_start_page A117
container_title Astronomy and astrophysics (Berlin)
container_volume 630
creator de Mijolla, D.
Viti, S.
Holdship, J.
Manolopoulou, I.
Yates, J.
description In studies of the interstellar medium in galaxies, radiative transfer models of molecular emission are useful for relating molecular line observations back to the physical conditions of the gas they trace. However, doing this requires solving a highly degenerate inverse problem. In order to alleviate these degeneracies, the abundances derived from astrochemical models can be converted into column densities and fed into radiative transfer models. This ensures that the molecular gas composition used by the radiative transfer models is chemically realistic. However, because of the complexity and long running time of astrochemical models, it can be difficult to incorporate chemical models into the radiative transfer framework. In this paper, we introduce a statistical emulator of the UCLCHEM astrochemical model, built using neural networks. We then illustrate, through examples of parameter estimations, how such an emulator can be applied to real and synthetic observations.
doi_str_mv 10.1051/0004-6361/201935973
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486553936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486553936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-e97d0bea1accf71523f54c8b7bc6a381f65b07b170cb9f1b5e2fbcdc022bdcf73</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSMEEmPwC7hU4lzmJE3SHtEEbDCJC2gSlyhJU8hom5F0iP17Ug3tZD_5fbb8ELrGcIuB4RkAFDmnHM8I4IqyStATNMEFJTmIgp-iydFxji5i3CRJcEknaLHsjQ9bH9Tg-o9MxSF482k7l5p95vrBZ51vrdm1KmSt622StW3b0fzjVGa7NBmc7y_RWaPaaK_-6xS9Pdy_zhf56uVxOb9b5YZyGHJbiRq0VVgZ0wjMCG1YYUottOGKlrjhTIPQWIDRVYM1s6TRpjZAiK4TQafo5rB3G_z3zsZBbvwu9OmkJEXJGaMV5clFDy4TfIzBNnIbXKfCXmKQY2RyDESOgchjZInKD1T63v4eERW-JBdUMFnCWj48c_FeLZ7kmv4Bw5FvSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486553936</pqid></control><display><type>article</type><title>Incorporating astrochemistry into molecular line modelling via emulation</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>de Mijolla, D. ; Viti, S. ; Holdship, J. ; Manolopoulou, I. ; Yates, J.</creator><creatorcontrib>de Mijolla, D. ; Viti, S. ; Holdship, J. ; Manolopoulou, I. ; Yates, J.</creatorcontrib><description>In studies of the interstellar medium in galaxies, radiative transfer models of molecular emission are useful for relating molecular line observations back to the physical conditions of the gas they trace. However, doing this requires solving a highly degenerate inverse problem. In order to alleviate these degeneracies, the abundances derived from astrochemical models can be converted into column densities and fed into radiative transfer models. This ensures that the molecular gas composition used by the radiative transfer models is chemically realistic. However, because of the complexity and long running time of astrochemical models, it can be difficult to incorporate chemical models into the radiative transfer framework. In this paper, we introduce a statistical emulator of the UCLCHEM astrochemical model, built using neural networks. We then illustrate, through examples of parameter estimations, how such an emulator can be applied to real and synthetic observations.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201935973</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Astrochemistry ; Astronomical models ; Emulators ; Galaxies ; galaxies: abundances ; Gas composition ; Interstellar chemistry ; Interstellar matter ; Inverse problems ; ISM: molecules ; Meteorological satellites ; methods: statistical ; Molecular gases ; Neural networks ; Parameter estimation ; Radiative transfer</subject><ispartof>Astronomy and astrophysics (Berlin), 2019-10, Vol.630, p.A117</ispartof><rights>Copyright EDP Sciences Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-e97d0bea1accf71523f54c8b7bc6a381f65b07b170cb9f1b5e2fbcdc022bdcf73</citedby><cites>FETCH-LOGICAL-c360t-e97d0bea1accf71523f54c8b7bc6a381f65b07b170cb9f1b5e2fbcdc022bdcf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>de Mijolla, D.</creatorcontrib><creatorcontrib>Viti, S.</creatorcontrib><creatorcontrib>Holdship, J.</creatorcontrib><creatorcontrib>Manolopoulou, I.</creatorcontrib><creatorcontrib>Yates, J.</creatorcontrib><title>Incorporating astrochemistry into molecular line modelling via emulation</title><title>Astronomy and astrophysics (Berlin)</title><description>In studies of the interstellar medium in galaxies, radiative transfer models of molecular emission are useful for relating molecular line observations back to the physical conditions of the gas they trace. However, doing this requires solving a highly degenerate inverse problem. In order to alleviate these degeneracies, the abundances derived from astrochemical models can be converted into column densities and fed into radiative transfer models. This ensures that the molecular gas composition used by the radiative transfer models is chemically realistic. However, because of the complexity and long running time of astrochemical models, it can be difficult to incorporate chemical models into the radiative transfer framework. In this paper, we introduce a statistical emulator of the UCLCHEM astrochemical model, built using neural networks. We then illustrate, through examples of parameter estimations, how such an emulator can be applied to real and synthetic observations.</description><subject>Astrochemistry</subject><subject>Astronomical models</subject><subject>Emulators</subject><subject>Galaxies</subject><subject>galaxies: abundances</subject><subject>Gas composition</subject><subject>Interstellar chemistry</subject><subject>Interstellar matter</subject><subject>Inverse problems</subject><subject>ISM: molecules</subject><subject>Meteorological satellites</subject><subject>methods: statistical</subject><subject>Molecular gases</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Radiative transfer</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwzAMhSMEEmPwC7hU4lzmJE3SHtEEbDCJC2gSlyhJU8hom5F0iP17Ug3tZD_5fbb8ELrGcIuB4RkAFDmnHM8I4IqyStATNMEFJTmIgp-iydFxji5i3CRJcEknaLHsjQ9bH9Tg-o9MxSF482k7l5p95vrBZ51vrdm1KmSt622StW3b0fzjVGa7NBmc7y_RWaPaaK_-6xS9Pdy_zhf56uVxOb9b5YZyGHJbiRq0VVgZ0wjMCG1YYUottOGKlrjhTIPQWIDRVYM1s6TRpjZAiK4TQafo5rB3G_z3zsZBbvwu9OmkJEXJGaMV5clFDy4TfIzBNnIbXKfCXmKQY2RyDESOgchjZInKD1T63v4eERW-JBdUMFnCWj48c_FeLZ7kmv4Bw5FvSg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>de Mijolla, D.</creator><creator>Viti, S.</creator><creator>Holdship, J.</creator><creator>Manolopoulou, I.</creator><creator>Yates, J.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191001</creationdate><title>Incorporating astrochemistry into molecular line modelling via emulation</title><author>de Mijolla, D. ; Viti, S. ; Holdship, J. ; Manolopoulou, I. ; Yates, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-e97d0bea1accf71523f54c8b7bc6a381f65b07b170cb9f1b5e2fbcdc022bdcf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astrochemistry</topic><topic>Astronomical models</topic><topic>Emulators</topic><topic>Galaxies</topic><topic>galaxies: abundances</topic><topic>Gas composition</topic><topic>Interstellar chemistry</topic><topic>Interstellar matter</topic><topic>Inverse problems</topic><topic>ISM: molecules</topic><topic>Meteorological satellites</topic><topic>methods: statistical</topic><topic>Molecular gases</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Radiative transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Mijolla, D.</creatorcontrib><creatorcontrib>Viti, S.</creatorcontrib><creatorcontrib>Holdship, J.</creatorcontrib><creatorcontrib>Manolopoulou, I.</creatorcontrib><creatorcontrib>Yates, J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Mijolla, D.</au><au>Viti, S.</au><au>Holdship, J.</au><au>Manolopoulou, I.</au><au>Yates, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating astrochemistry into molecular line modelling via emulation</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>630</volume><spage>A117</spage><pages>A117-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>In studies of the interstellar medium in galaxies, radiative transfer models of molecular emission are useful for relating molecular line observations back to the physical conditions of the gas they trace. However, doing this requires solving a highly degenerate inverse problem. In order to alleviate these degeneracies, the abundances derived from astrochemical models can be converted into column densities and fed into radiative transfer models. This ensures that the molecular gas composition used by the radiative transfer models is chemically realistic. However, because of the complexity and long running time of astrochemical models, it can be difficult to incorporate chemical models into the radiative transfer framework. In this paper, we introduce a statistical emulator of the UCLCHEM astrochemical model, built using neural networks. We then illustrate, through examples of parameter estimations, how such an emulator can be applied to real and synthetic observations.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201935973</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2019-10, Vol.630, p.A117
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_2486553936
source EZB-FREE-00999 freely available EZB journals
subjects Astrochemistry
Astronomical models
Emulators
Galaxies
galaxies: abundances
Gas composition
Interstellar chemistry
Interstellar matter
Inverse problems
ISM: molecules
Meteorological satellites
methods: statistical
Molecular gases
Neural networks
Parameter estimation
Radiative transfer
title Incorporating astrochemistry into molecular line modelling via emulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20astrochemistry%20into%20molecular%20line%20modelling%20via%20emulation&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=de%20Mijolla,%20D.&rft.date=2019-10-01&rft.volume=630&rft.spage=A117&rft.pages=A117-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201935973&rft_dat=%3Cproquest_cross%3E2486553936%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-e97d0bea1accf71523f54c8b7bc6a381f65b07b170cb9f1b5e2fbcdc022bdcf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2486553936&rft_id=info:pmid/&rfr_iscdi=true