Loading…
Incorporating astrochemistry into molecular line modelling via emulation
In studies of the interstellar medium in galaxies, radiative transfer models of molecular emission are useful for relating molecular line observations back to the physical conditions of the gas they trace. However, doing this requires solving a highly degenerate inverse problem. In order to alleviat...
Saved in:
Published in: | Astronomy and astrophysics (Berlin) 2019-10, Vol.630, p.A117 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-e97d0bea1accf71523f54c8b7bc6a381f65b07b170cb9f1b5e2fbcdc022bdcf73 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-e97d0bea1accf71523f54c8b7bc6a381f65b07b170cb9f1b5e2fbcdc022bdcf73 |
container_end_page | |
container_issue | |
container_start_page | A117 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 630 |
creator | de Mijolla, D. Viti, S. Holdship, J. Manolopoulou, I. Yates, J. |
description | In studies of the interstellar medium in galaxies, radiative transfer models of molecular emission are useful for relating molecular line observations back to the physical conditions of the gas they trace. However, doing this requires solving a highly degenerate inverse problem. In order to alleviate these degeneracies, the abundances derived from astrochemical models can be converted into column densities and fed into radiative transfer models. This ensures that the molecular gas composition used by the radiative transfer models is chemically realistic. However, because of the complexity and long running time of astrochemical models, it can be difficult to incorporate chemical models into the radiative transfer framework. In this paper, we introduce a statistical emulator of the UCLCHEM astrochemical model, built using neural networks. We then illustrate, through examples of parameter estimations, how such an emulator can be applied to real and synthetic observations. |
doi_str_mv | 10.1051/0004-6361/201935973 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486553936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486553936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-e97d0bea1accf71523f54c8b7bc6a381f65b07b170cb9f1b5e2fbcdc022bdcf73</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSMEEmPwC7hU4lzmJE3SHtEEbDCJC2gSlyhJU8hom5F0iP17Ug3tZD_5fbb8ELrGcIuB4RkAFDmnHM8I4IqyStATNMEFJTmIgp-iydFxji5i3CRJcEknaLHsjQ9bH9Tg-o9MxSF482k7l5p95vrBZ51vrdm1KmSt622StW3b0fzjVGa7NBmc7y_RWaPaaK_-6xS9Pdy_zhf56uVxOb9b5YZyGHJbiRq0VVgZ0wjMCG1YYUottOGKlrjhTIPQWIDRVYM1s6TRpjZAiK4TQafo5rB3G_z3zsZBbvwu9OmkJEXJGaMV5clFDy4TfIzBNnIbXKfCXmKQY2RyDESOgchjZInKD1T63v4eERW-JBdUMFnCWj48c_FeLZ7kmv4Bw5FvSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486553936</pqid></control><display><type>article</type><title>Incorporating astrochemistry into molecular line modelling via emulation</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>de Mijolla, D. ; Viti, S. ; Holdship, J. ; Manolopoulou, I. ; Yates, J.</creator><creatorcontrib>de Mijolla, D. ; Viti, S. ; Holdship, J. ; Manolopoulou, I. ; Yates, J.</creatorcontrib><description>In studies of the interstellar medium in galaxies, radiative transfer models of molecular emission are useful for relating molecular line observations back to the physical conditions of the gas they trace. However, doing this requires solving a highly degenerate inverse problem. In order to alleviate these degeneracies, the abundances derived from astrochemical models can be converted into column densities and fed into radiative transfer models. This ensures that the molecular gas composition used by the radiative transfer models is chemically realistic. However, because of the complexity and long running time of astrochemical models, it can be difficult to incorporate chemical models into the radiative transfer framework. In this paper, we introduce a statistical emulator of the UCLCHEM astrochemical model, built using neural networks. We then illustrate, through examples of parameter estimations, how such an emulator can be applied to real and synthetic observations.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201935973</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Astrochemistry ; Astronomical models ; Emulators ; Galaxies ; galaxies: abundances ; Gas composition ; Interstellar chemistry ; Interstellar matter ; Inverse problems ; ISM: molecules ; Meteorological satellites ; methods: statistical ; Molecular gases ; Neural networks ; Parameter estimation ; Radiative transfer</subject><ispartof>Astronomy and astrophysics (Berlin), 2019-10, Vol.630, p.A117</ispartof><rights>Copyright EDP Sciences Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-e97d0bea1accf71523f54c8b7bc6a381f65b07b170cb9f1b5e2fbcdc022bdcf73</citedby><cites>FETCH-LOGICAL-c360t-e97d0bea1accf71523f54c8b7bc6a381f65b07b170cb9f1b5e2fbcdc022bdcf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>de Mijolla, D.</creatorcontrib><creatorcontrib>Viti, S.</creatorcontrib><creatorcontrib>Holdship, J.</creatorcontrib><creatorcontrib>Manolopoulou, I.</creatorcontrib><creatorcontrib>Yates, J.</creatorcontrib><title>Incorporating astrochemistry into molecular line modelling via emulation</title><title>Astronomy and astrophysics (Berlin)</title><description>In studies of the interstellar medium in galaxies, radiative transfer models of molecular emission are useful for relating molecular line observations back to the physical conditions of the gas they trace. However, doing this requires solving a highly degenerate inverse problem. In order to alleviate these degeneracies, the abundances derived from astrochemical models can be converted into column densities and fed into radiative transfer models. This ensures that the molecular gas composition used by the radiative transfer models is chemically realistic. However, because of the complexity and long running time of astrochemical models, it can be difficult to incorporate chemical models into the radiative transfer framework. In this paper, we introduce a statistical emulator of the UCLCHEM astrochemical model, built using neural networks. We then illustrate, through examples of parameter estimations, how such an emulator can be applied to real and synthetic observations.</description><subject>Astrochemistry</subject><subject>Astronomical models</subject><subject>Emulators</subject><subject>Galaxies</subject><subject>galaxies: abundances</subject><subject>Gas composition</subject><subject>Interstellar chemistry</subject><subject>Interstellar matter</subject><subject>Inverse problems</subject><subject>ISM: molecules</subject><subject>Meteorological satellites</subject><subject>methods: statistical</subject><subject>Molecular gases</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Radiative transfer</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwzAMhSMEEmPwC7hU4lzmJE3SHtEEbDCJC2gSlyhJU8hom5F0iP17Ug3tZD_5fbb8ELrGcIuB4RkAFDmnHM8I4IqyStATNMEFJTmIgp-iydFxji5i3CRJcEknaLHsjQ9bH9Tg-o9MxSF482k7l5p95vrBZ51vrdm1KmSt622StW3b0fzjVGa7NBmc7y_RWaPaaK_-6xS9Pdy_zhf56uVxOb9b5YZyGHJbiRq0VVgZ0wjMCG1YYUottOGKlrjhTIPQWIDRVYM1s6TRpjZAiK4TQafo5rB3G_z3zsZBbvwu9OmkJEXJGaMV5clFDy4TfIzBNnIbXKfCXmKQY2RyDESOgchjZInKD1T63v4eERW-JBdUMFnCWj48c_FeLZ7kmv4Bw5FvSg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>de Mijolla, D.</creator><creator>Viti, S.</creator><creator>Holdship, J.</creator><creator>Manolopoulou, I.</creator><creator>Yates, J.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191001</creationdate><title>Incorporating astrochemistry into molecular line modelling via emulation</title><author>de Mijolla, D. ; Viti, S. ; Holdship, J. ; Manolopoulou, I. ; Yates, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-e97d0bea1accf71523f54c8b7bc6a381f65b07b170cb9f1b5e2fbcdc022bdcf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astrochemistry</topic><topic>Astronomical models</topic><topic>Emulators</topic><topic>Galaxies</topic><topic>galaxies: abundances</topic><topic>Gas composition</topic><topic>Interstellar chemistry</topic><topic>Interstellar matter</topic><topic>Inverse problems</topic><topic>ISM: molecules</topic><topic>Meteorological satellites</topic><topic>methods: statistical</topic><topic>Molecular gases</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Radiative transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Mijolla, D.</creatorcontrib><creatorcontrib>Viti, S.</creatorcontrib><creatorcontrib>Holdship, J.</creatorcontrib><creatorcontrib>Manolopoulou, I.</creatorcontrib><creatorcontrib>Yates, J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Mijolla, D.</au><au>Viti, S.</au><au>Holdship, J.</au><au>Manolopoulou, I.</au><au>Yates, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating astrochemistry into molecular line modelling via emulation</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>630</volume><spage>A117</spage><pages>A117-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>In studies of the interstellar medium in galaxies, radiative transfer models of molecular emission are useful for relating molecular line observations back to the physical conditions of the gas they trace. However, doing this requires solving a highly degenerate inverse problem. In order to alleviate these degeneracies, the abundances derived from astrochemical models can be converted into column densities and fed into radiative transfer models. This ensures that the molecular gas composition used by the radiative transfer models is chemically realistic. However, because of the complexity and long running time of astrochemical models, it can be difficult to incorporate chemical models into the radiative transfer framework. In this paper, we introduce a statistical emulator of the UCLCHEM astrochemical model, built using neural networks. We then illustrate, through examples of parameter estimations, how such an emulator can be applied to real and synthetic observations.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201935973</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2019-10, Vol.630, p.A117 |
issn | 0004-6361 1432-0746 |
language | eng |
recordid | cdi_proquest_journals_2486553936 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Astrochemistry Astronomical models Emulators Galaxies galaxies: abundances Gas composition Interstellar chemistry Interstellar matter Inverse problems ISM: molecules Meteorological satellites methods: statistical Molecular gases Neural networks Parameter estimation Radiative transfer |
title | Incorporating astrochemistry into molecular line modelling via emulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20astrochemistry%20into%20molecular%20line%20modelling%20via%20emulation&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=de%20Mijolla,%20D.&rft.date=2019-10-01&rft.volume=630&rft.spage=A117&rft.pages=A117-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201935973&rft_dat=%3Cproquest_cross%3E2486553936%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-e97d0bea1accf71523f54c8b7bc6a381f65b07b170cb9f1b5e2fbcdc022bdcf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2486553936&rft_id=info:pmid/&rfr_iscdi=true |