Loading…

A Heuristic for Dynamic Output Predictive Control Design for Uncertain Nonlinear Systems

In this paper, a simple heuristic is proposed for the design of uncertainty aware predictive controllers for nonlinear models involving uncertain parameters. The method relies on Machine Learning-based approximation of ideal deterministic MPC solutions with perfectly known parameters. An efficient c...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-02
Main Author: Alamir, Mazen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Alamir, Mazen
description In this paper, a simple heuristic is proposed for the design of uncertainty aware predictive controllers for nonlinear models involving uncertain parameters. The method relies on Machine Learning-based approximation of ideal deterministic MPC solutions with perfectly known parameters. An efficient construction of the learning data set from these off-line solutions is proposed in which each solution provides many samples in the learning data. This enables a drastic reduction of the required number of Non Linear Programming problems to be solved off-line while explicitly exploiting the statistics of the parameters dispersion. The learning data is then used to design a fast on-line output dynamic feedback that explicitly incorporate information of the statistics of the parameters dispersion. An example is provided to illustrate the efficiency and the relevance of the proposed framework. It is in particular shown that the proposed solution recovers up to 78\% of the expected advantage of having a perfect knowledge of the parameters compared to nominal design.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2486626230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486626230</sourcerecordid><originalsourceid>FETCH-proquest_journals_24866262303</originalsourceid><addsrcrecordid>eNqNis0KgkAYAJcgSMp3WOgsbN-qeQ0tPFVQQTdZ7DNWdNf2J_Dtk-gBOs3AzIwEwPkmymKABQmtbRljkG4hSXhA7jtaojfSOlnTRhtajEr0k5-8G7yjZ4MPWTv5Rppr5YzuaIFWPtV3vqkajRNS0aNWnVQoDL2M1mFvV2TeiM5i-OOSrA_7a15Gg9Evj9ZVrfZGTamCOEtTSIEz_t_1AYqTQfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486626230</pqid></control><display><type>article</type><title>A Heuristic for Dynamic Output Predictive Control Design for Uncertain Nonlinear Systems</title><source>Publicly Available Content Database</source><creator>Alamir, Mazen</creator><creatorcontrib>Alamir, Mazen</creatorcontrib><description>In this paper, a simple heuristic is proposed for the design of uncertainty aware predictive controllers for nonlinear models involving uncertain parameters. The method relies on Machine Learning-based approximation of ideal deterministic MPC solutions with perfectly known parameters. An efficient construction of the learning data set from these off-line solutions is proposed in which each solution provides many samples in the learning data. This enables a drastic reduction of the required number of Non Linear Programming problems to be solved off-line while explicitly exploiting the statistics of the parameters dispersion. The learning data is then used to design a fast on-line output dynamic feedback that explicitly incorporate information of the statistics of the parameters dispersion. An example is provided to illustrate the efficiency and the relevance of the proposed framework. It is in particular shown that the proposed solution recovers up to 78\% of the expected advantage of having a perfect knowledge of the parameters compared to nominal design.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dispersion ; Linear programming ; Machine learning ; Nonlinear control ; Nonlinear systems ; Parameter uncertainty ; Predictive control ; Statistical methods</subject><ispartof>arXiv.org, 2021-02</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2486626230?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Alamir, Mazen</creatorcontrib><title>A Heuristic for Dynamic Output Predictive Control Design for Uncertain Nonlinear Systems</title><title>arXiv.org</title><description>In this paper, a simple heuristic is proposed for the design of uncertainty aware predictive controllers for nonlinear models involving uncertain parameters. The method relies on Machine Learning-based approximation of ideal deterministic MPC solutions with perfectly known parameters. An efficient construction of the learning data set from these off-line solutions is proposed in which each solution provides many samples in the learning data. This enables a drastic reduction of the required number of Non Linear Programming problems to be solved off-line while explicitly exploiting the statistics of the parameters dispersion. The learning data is then used to design a fast on-line output dynamic feedback that explicitly incorporate information of the statistics of the parameters dispersion. An example is provided to illustrate the efficiency and the relevance of the proposed framework. It is in particular shown that the proposed solution recovers up to 78\% of the expected advantage of having a perfect knowledge of the parameters compared to nominal design.</description><subject>Dispersion</subject><subject>Linear programming</subject><subject>Machine learning</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Parameter uncertainty</subject><subject>Predictive control</subject><subject>Statistical methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNis0KgkAYAJcgSMp3WOgsbN-qeQ0tPFVQQTdZ7DNWdNf2J_Dtk-gBOs3AzIwEwPkmymKABQmtbRljkG4hSXhA7jtaojfSOlnTRhtajEr0k5-8G7yjZ4MPWTv5Rppr5YzuaIFWPtV3vqkajRNS0aNWnVQoDL2M1mFvV2TeiM5i-OOSrA_7a15Gg9Evj9ZVrfZGTamCOEtTSIEz_t_1AYqTQfE</recordid><startdate>20210203</startdate><enddate>20210203</enddate><creator>Alamir, Mazen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210203</creationdate><title>A Heuristic for Dynamic Output Predictive Control Design for Uncertain Nonlinear Systems</title><author>Alamir, Mazen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24866262303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dispersion</topic><topic>Linear programming</topic><topic>Machine learning</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Parameter uncertainty</topic><topic>Predictive control</topic><topic>Statistical methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Alamir, Mazen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alamir, Mazen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Heuristic for Dynamic Output Predictive Control Design for Uncertain Nonlinear Systems</atitle><jtitle>arXiv.org</jtitle><date>2021-02-03</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, a simple heuristic is proposed for the design of uncertainty aware predictive controllers for nonlinear models involving uncertain parameters. The method relies on Machine Learning-based approximation of ideal deterministic MPC solutions with perfectly known parameters. An efficient construction of the learning data set from these off-line solutions is proposed in which each solution provides many samples in the learning data. This enables a drastic reduction of the required number of Non Linear Programming problems to be solved off-line while explicitly exploiting the statistics of the parameters dispersion. The learning data is then used to design a fast on-line output dynamic feedback that explicitly incorporate information of the statistics of the parameters dispersion. An example is provided to illustrate the efficiency and the relevance of the proposed framework. It is in particular shown that the proposed solution recovers up to 78\% of the expected advantage of having a perfect knowledge of the parameters compared to nominal design.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2486626230
source Publicly Available Content Database
subjects Dispersion
Linear programming
Machine learning
Nonlinear control
Nonlinear systems
Parameter uncertainty
Predictive control
Statistical methods
title A Heuristic for Dynamic Output Predictive Control Design for Uncertain Nonlinear Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Heuristic%20for%20Dynamic%20Output%20Predictive%20Control%20Design%20for%20Uncertain%20Nonlinear%20Systems&rft.jtitle=arXiv.org&rft.au=Alamir,%20Mazen&rft.date=2021-02-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2486626230%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24866262303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2486626230&rft_id=info:pmid/&rfr_iscdi=true