Loading…

A New Optimal Guidance Law with Impact Time and Angle Constraints Based on Sequential Convex Programming

This paper proposed an optimal time-varying proportional navigation guidance law based on sequential convex programming. The guidance law can achieve the desired impact angle and impact time with look angle and lateral acceleration constraints. By treating the multiconstraints’ guidance problem as a...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2021-01, Vol.2021, p.1-15
Main Authors: Pei, Pei, Wang, Jiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposed an optimal time-varying proportional navigation guidance law based on sequential convex programming. The guidance law can achieve the desired impact angle and impact time with look angle and lateral acceleration constraints. By treating the multiconstraints’ guidance problem as an optimization problem and changing the independent variable to linearize the problem and constraints, the original nonlinear and nonconvex problem is transformed into a series of convex optimization problem so that it can be quickly solved by sequential convex programming. Numerical simulations compared to nonlinear programming and traditional analytical guidance law demonstrate the effectiveness and efficiency of the proposed algorithm. Finally, the proposed guidance law is verified to satisfy different impact time periods and impact angle constraints.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/6618351