Loading…

A search for the OH 6035 MHz line in high-mass star-forming regions

Context. The excited states of OH masers detected in the environment of high-mass young stellar objects (HMYSOs) are important for improving our understanding of the physical conditions of these objects and also provide information about their magnetic fields. Aims. We aim to search for excited-stat...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2020-10, Vol.642, p.A145
Main Authors: Szymczak, M., Wolak, P., Bartkiewicz, A., Aramowicz, M., Durjasz, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Context. The excited states of OH masers detected in the environment of high-mass young stellar objects (HMYSOs) are important for improving our understanding of the physical conditions of these objects and also provide information about their magnetic fields. Aims. We aim to search for excited-state OH 6035 MHz maser emission in HMYSOs which might have escaped detection in previous surveys or were never searched for. Methods. A sample of HMYSOs derived from untargeted surveys of the 6668 MHz methanol maser line was observed at 6035 MHz OH transition with the Torun 32 m radio telescope. The 6035 MHz detections were observed in the OH 6031 MHz line. Two-thirds of the detections were observed at least three times over a two-year period. Results. Out of 445 targets, 37 were detected at 6035 MHz, including seven new discoveries. The 6031 MHz line was detected towards ten 6035 MHz sources, one of which was not previously reported. All the newly detected sources are faint with the peak flux density lower than 4 Jy and show significant or high variability on timescales of 4 to 20 months. Zeeman pair candidates identified in three new sources imply a magnetic field intensity of 2–11 mG. Comparison of our spectra with those obtained ~10 yr ago indicates different degrees of variability but there is a general increase in the variability index on an ~25 yr timescale, usually accompanied by significant changes in the profile shape.
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361/202039009