Loading…
Three open clusters containing Cepheids: NGC 6649, NGC 6664, and Berkeley 55
Classical Cepheids in open clusters play an important role in benchmarking stellar evolution models, in addition to anchoring the cosmic distance scale and invariably securing the Hubble constant. Three pertinent clusters hosting classical Cepheids and red (super)giants are: NGC 6649, NGC 6664, and...
Saved in:
Published in: | Astronomy and astrophysics (Berlin) 2020-12, Vol.644, p.A136 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Classical Cepheids in open clusters play an important role in benchmarking stellar evolution models, in addition to anchoring the cosmic distance scale and invariably securing the Hubble constant. Three pertinent clusters hosting classical Cepheids and red (super)giants are: NGC 6649, NGC 6664, and Berkeley 55. These clusters form the basis of analysis to assess newly acquired spectra (≈50), archival photometry, and
Gaia
DR2 data. Importantly, for the first time chemical abundances were determined for the evolved members of NGC 6649 and NGC 6664. We find that they are slightly metal-poor relative to the mean Galactic gradient. Also, an overabundance of Ba is observed. These two clusters likely belong to the thin disc and the latter finding supports the “
s
-enhanced” scenario of D’Orazi et al. (2009). NGC 6664 and Berkeley 55 exhibit radial velocities consistent with Galactic rotation, while NGC 6649 displays a peculiar velocity. The resulting age estimates for the clusters (≈70 Ma) imply masses of ≈6
M
⊙
for the (super)giant demographic. Lastly, the observed yellow-to-red (super)giant ratio is lower than expected and the overall differences that are relative to the models reflect the outstanding theoretical uncertainties. |
---|---|
ISSN: | 0004-6361 1432-0746 |
DOI: | 10.1051/0004-6361/202038495 |