Loading…
3D Fingerprint Recognition based on Ridge-Valley-Guided 3D Reconstruction and 3D Topology Polymer Feature Extraction
An automated fingerprint recognition system (AFRS) for 3D fingerprints is essential and highly promising for biometric security. Despite the progress in developing 3D AFRSs, achieving high-quality real-time reconstruction and high-accuracy recognition of 3D fingerprints remain two challenging issues...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2021-03, Vol.43 (3), p.1085-1091 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An automated fingerprint recognition system (AFRS) for 3D fingerprints is essential and highly promising for biometric security. Despite the progress in developing 3D AFRSs, achieving high-quality real-time reconstruction and high-accuracy recognition of 3D fingerprints remain two challenging issues. To address them, we propose a robust 3D AFRS based on ridge-valley (RV)-guided 3D fingerprint reconstruction and 3D topology polymer (TTP) feature extraction. The former considers the unique fingerprint characteristics of the RV and achieves real-time reconstruction. Unlike traditional triangulation-based methods that establish correspondences between points by cross-correlation-based searching, we propose to establish RV correspondences (RVCs) between ridges/valleys by defining and calculating a RVC matrix based on the topology of RV curves. To enhance depth reconstruction, curve-based smoothing is proposed to refine our novel RV disparity map. The TTP feature codes the 3D topology by projecting the 3D minutiae onto multiple planes and extracting their corresponding 2D topologies and has proven to be effective and efficient for 3D fingerprint recognition. Comprehensive experimental results demonstrate that our method outperforms the state-of-the-art methods in terms of both reconstruction and recognition accuracy. Also, due to its very short running time, it is appropriate for practical applications. |
---|---|
ISSN: | 0162-8828 1939-3539 2160-9292 |
DOI: | 10.1109/TPAMI.2019.2949299 |