Loading…
PassengerFlows: A Correlation-Based Passenger Estimator in Automated Public Transport
Human mobility information is widely needed by many sectors in smart cities, especially for public transport. This work designs lightweight algorithms to perform stop detection , passenger flow tracking , and passenger estimation in an automated train. The on-board learning and detection algorithms...
Saved in:
Published in: | IEEE transactions on network science and engineering 2020-10, Vol.7 (4), p.2167-2181 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-35b6316092cc065f06ddc3b1548a7276ee35ff0631c0729c285ddb4ceb057cbf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-35b6316092cc065f06ddc3b1548a7276ee35ff0631c0729c285ddb4ceb057cbf3 |
container_end_page | 2181 |
container_issue | 4 |
container_start_page | 2167 |
container_title | IEEE transactions on network science and engineering |
container_volume | 7 |
creator | Wu, Fang-Jing Huang, Yunfeng Doring, Lucas Althoff, Stephanie Bitterschulte, Kai Chai, Keng Yip Mao, Lidong Grabarczyk, Damian Kovacs, Erno |
description | Human mobility information is widely needed by many sectors in smart cities, especially for public transport. This work designs lightweight algorithms to perform stop detection , passenger flow tracking , and passenger estimation in an automated train. The on-board learning and detection algorithms are running on an edge node that is integrated with Wi-Fi sniffing technology, a GPS sensor, and an inertial measurement unit (IMU) sensor. The stop detection algorithm determines if the automated train is static at which train station based on GPS and IMU data. When the train is moving, the correlations between statistical properties extracted from Wi-Fi probes and the actual number of passengers change. Therefore, two algorithms, passenger flow tracking and passenger estimation, are designed to analyze passenger mobility. The passenger flow tracking algorithm analyzes the number of incoming and outgoing passengers in the train. The passenger estimation algorithm approximates the number of passengers inside the train based on a multi-dimensional regression model created by statistical properties extracted from different device brands. The designed prototype is deployed in an automated hanging train to conduct real-world experiments. The experimental results indicate that the proposed passenger flow tracking algorithm reduces the average errors of 62.5\% and 70\% compared against two existing clustering algorithms respectively. When the devices' brands are split for creating a regression model, compared with two counting-based approaches, the proposed passenger estimation algorithm results in lower errors with a mean of 3.15 and a variance of 9.29. |
doi_str_mv | 10.1109/TNSE.2020.2998536 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2487440647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9103621</ieee_id><sourcerecordid>2487440647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-35b6316092cc065f06ddc3b1548a7276ee35ff0631c0729c285ddb4ceb057cbf3</originalsourceid><addsrcrecordid>eNo9kN9LwzAQgIMoOHR_gPhS8LnzkkuTxrc5NhWGCm7gW2jTVDpqM5MU8b-3ZWNP94Pv7riPkBsKM0pB3W9eP5YzBgxmTKk8Q3FGJgyRp8jU5_mYM5lyoeQlmYawAwDKcoGIE7J9L0Kw3Zf1q9b9hodkniyc97YtYuO69LEItkpOTLIMsfkuovNJ0yXzPrqhGIG-bBuTbHzRhb3z8Zpc1EUb7PQYr8h2tdwsntP129PLYr5ODVMYU8xKgVSAYsaAyGoQVWWwpBnPC8mksBazeugiNSCZMizPqqrkxpaQSVPWeEXuDnv33v30NkS9c73vhpOa8VxyDoLLgaIHyngXgre13vvhC_-nKehRoB4F6lGgPgocZm4PM4219sQrCigYxX-4ZWwt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487440647</pqid></control><display><type>article</type><title>PassengerFlows: A Correlation-Based Passenger Estimator in Automated Public Transport</title><source>IEEE Xplore (Online service)</source><creator>Wu, Fang-Jing ; Huang, Yunfeng ; Doring, Lucas ; Althoff, Stephanie ; Bitterschulte, Kai ; Chai, Keng Yip ; Mao, Lidong ; Grabarczyk, Damian ; Kovacs, Erno</creator><creatorcontrib>Wu, Fang-Jing ; Huang, Yunfeng ; Doring, Lucas ; Althoff, Stephanie ; Bitterschulte, Kai ; Chai, Keng Yip ; Mao, Lidong ; Grabarczyk, Damian ; Kovacs, Erno</creatorcontrib><description><![CDATA[Human mobility information is widely needed by many sectors in smart cities, especially for public transport. This work designs lightweight algorithms to perform stop detection , passenger flow tracking , and passenger estimation in an automated train. The on-board learning and detection algorithms are running on an edge node that is integrated with Wi-Fi sniffing technology, a GPS sensor, and an inertial measurement unit (IMU) sensor. The stop detection algorithm determines if the automated train is static at which train station based on GPS and IMU data. When the train is moving, the correlations between statistical properties extracted from Wi-Fi probes and the actual number of passengers change. Therefore, two algorithms, passenger flow tracking and passenger estimation, are designed to analyze passenger mobility. The passenger flow tracking algorithm analyzes the number of incoming and outgoing passengers in the train. The passenger estimation algorithm approximates the number of passengers inside the train based on a multi-dimensional regression model created by statistical properties extracted from different device brands. The designed prototype is deployed in an automated hanging train to conduct real-world experiments. The experimental results indicate that the proposed passenger flow tracking algorithm reduces the average errors of <inline-formula><tex-math notation="LaTeX">62.5\%</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">70\%</tex-math></inline-formula> compared against two existing clustering algorithms respectively. When the devices' brands are split for creating a regression model, compared with two counting-based approaches, the proposed passenger estimation algorithm results in lower errors with a mean of 3.15 and a variance of 9.29.]]></description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2020.2998536</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Airports ; Algorithms ; Automation ; Clustering ; Clustering algorithms ; crowd mobility analytics ; Cyber-physical systems ; Estimation ; Global Positioning System ; Inertial platforms ; Inertial sensing devices ; Internet of Things ; Machine learning ; Mobile handsets ; Passengers ; pervasive computing ; Public transportation ; Railway stations ; Regression analysis ; Regression models ; Satellite navigation systems ; Smart cities ; Statistical analysis ; Tracking ; Wireless fidelity</subject><ispartof>IEEE transactions on network science and engineering, 2020-10, Vol.7 (4), p.2167-2181</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-35b6316092cc065f06ddc3b1548a7276ee35ff0631c0729c285ddb4ceb057cbf3</citedby><cites>FETCH-LOGICAL-c293t-35b6316092cc065f06ddc3b1548a7276ee35ff0631c0729c285ddb4ceb057cbf3</cites><orcidid>0000-0003-4443-3353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9103621$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wu, Fang-Jing</creatorcontrib><creatorcontrib>Huang, Yunfeng</creatorcontrib><creatorcontrib>Doring, Lucas</creatorcontrib><creatorcontrib>Althoff, Stephanie</creatorcontrib><creatorcontrib>Bitterschulte, Kai</creatorcontrib><creatorcontrib>Chai, Keng Yip</creatorcontrib><creatorcontrib>Mao, Lidong</creatorcontrib><creatorcontrib>Grabarczyk, Damian</creatorcontrib><creatorcontrib>Kovacs, Erno</creatorcontrib><title>PassengerFlows: A Correlation-Based Passenger Estimator in Automated Public Transport</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description><![CDATA[Human mobility information is widely needed by many sectors in smart cities, especially for public transport. This work designs lightweight algorithms to perform stop detection , passenger flow tracking , and passenger estimation in an automated train. The on-board learning and detection algorithms are running on an edge node that is integrated with Wi-Fi sniffing technology, a GPS sensor, and an inertial measurement unit (IMU) sensor. The stop detection algorithm determines if the automated train is static at which train station based on GPS and IMU data. When the train is moving, the correlations between statistical properties extracted from Wi-Fi probes and the actual number of passengers change. Therefore, two algorithms, passenger flow tracking and passenger estimation, are designed to analyze passenger mobility. The passenger flow tracking algorithm analyzes the number of incoming and outgoing passengers in the train. The passenger estimation algorithm approximates the number of passengers inside the train based on a multi-dimensional regression model created by statistical properties extracted from different device brands. The designed prototype is deployed in an automated hanging train to conduct real-world experiments. The experimental results indicate that the proposed passenger flow tracking algorithm reduces the average errors of <inline-formula><tex-math notation="LaTeX">62.5\%</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">70\%</tex-math></inline-formula> compared against two existing clustering algorithms respectively. When the devices' brands are split for creating a regression model, compared with two counting-based approaches, the proposed passenger estimation algorithm results in lower errors with a mean of 3.15 and a variance of 9.29.]]></description><subject>Airports</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>crowd mobility analytics</subject><subject>Cyber-physical systems</subject><subject>Estimation</subject><subject>Global Positioning System</subject><subject>Inertial platforms</subject><subject>Inertial sensing devices</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Mobile handsets</subject><subject>Passengers</subject><subject>pervasive computing</subject><subject>Public transportation</subject><subject>Railway stations</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Satellite navigation systems</subject><subject>Smart cities</subject><subject>Statistical analysis</subject><subject>Tracking</subject><subject>Wireless fidelity</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQgIMoOHR_gPhS8LnzkkuTxrc5NhWGCm7gW2jTVDpqM5MU8b-3ZWNP94Pv7riPkBsKM0pB3W9eP5YzBgxmTKk8Q3FGJgyRp8jU5_mYM5lyoeQlmYawAwDKcoGIE7J9L0Kw3Zf1q9b9hodkniyc97YtYuO69LEItkpOTLIMsfkuovNJ0yXzPrqhGIG-bBuTbHzRhb3z8Zpc1EUb7PQYr8h2tdwsntP129PLYr5ODVMYU8xKgVSAYsaAyGoQVWWwpBnPC8mksBazeugiNSCZMizPqqrkxpaQSVPWeEXuDnv33v30NkS9c73vhpOa8VxyDoLLgaIHyngXgre13vvhC_-nKehRoB4F6lGgPgocZm4PM4219sQrCigYxX-4ZWwt</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wu, Fang-Jing</creator><creator>Huang, Yunfeng</creator><creator>Doring, Lucas</creator><creator>Althoff, Stephanie</creator><creator>Bitterschulte, Kai</creator><creator>Chai, Keng Yip</creator><creator>Mao, Lidong</creator><creator>Grabarczyk, Damian</creator><creator>Kovacs, Erno</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4443-3353</orcidid></search><sort><creationdate>20201001</creationdate><title>PassengerFlows: A Correlation-Based Passenger Estimator in Automated Public Transport</title><author>Wu, Fang-Jing ; Huang, Yunfeng ; Doring, Lucas ; Althoff, Stephanie ; Bitterschulte, Kai ; Chai, Keng Yip ; Mao, Lidong ; Grabarczyk, Damian ; Kovacs, Erno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-35b6316092cc065f06ddc3b1548a7276ee35ff0631c0729c285ddb4ceb057cbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airports</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>crowd mobility analytics</topic><topic>Cyber-physical systems</topic><topic>Estimation</topic><topic>Global Positioning System</topic><topic>Inertial platforms</topic><topic>Inertial sensing devices</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Mobile handsets</topic><topic>Passengers</topic><topic>pervasive computing</topic><topic>Public transportation</topic><topic>Railway stations</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Satellite navigation systems</topic><topic>Smart cities</topic><topic>Statistical analysis</topic><topic>Tracking</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Fang-Jing</creatorcontrib><creatorcontrib>Huang, Yunfeng</creatorcontrib><creatorcontrib>Doring, Lucas</creatorcontrib><creatorcontrib>Althoff, Stephanie</creatorcontrib><creatorcontrib>Bitterschulte, Kai</creatorcontrib><creatorcontrib>Chai, Keng Yip</creatorcontrib><creatorcontrib>Mao, Lidong</creatorcontrib><creatorcontrib>Grabarczyk, Damian</creatorcontrib><creatorcontrib>Kovacs, Erno</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Fang-Jing</au><au>Huang, Yunfeng</au><au>Doring, Lucas</au><au>Althoff, Stephanie</au><au>Bitterschulte, Kai</au><au>Chai, Keng Yip</au><au>Mao, Lidong</au><au>Grabarczyk, Damian</au><au>Kovacs, Erno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PassengerFlows: A Correlation-Based Passenger Estimator in Automated Public Transport</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>7</volume><issue>4</issue><spage>2167</spage><epage>2181</epage><pages>2167-2181</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract><![CDATA[Human mobility information is widely needed by many sectors in smart cities, especially for public transport. This work designs lightweight algorithms to perform stop detection , passenger flow tracking , and passenger estimation in an automated train. The on-board learning and detection algorithms are running on an edge node that is integrated with Wi-Fi sniffing technology, a GPS sensor, and an inertial measurement unit (IMU) sensor. The stop detection algorithm determines if the automated train is static at which train station based on GPS and IMU data. When the train is moving, the correlations between statistical properties extracted from Wi-Fi probes and the actual number of passengers change. Therefore, two algorithms, passenger flow tracking and passenger estimation, are designed to analyze passenger mobility. The passenger flow tracking algorithm analyzes the number of incoming and outgoing passengers in the train. The passenger estimation algorithm approximates the number of passengers inside the train based on a multi-dimensional regression model created by statistical properties extracted from different device brands. The designed prototype is deployed in an automated hanging train to conduct real-world experiments. The experimental results indicate that the proposed passenger flow tracking algorithm reduces the average errors of <inline-formula><tex-math notation="LaTeX">62.5\%</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">70\%</tex-math></inline-formula> compared against two existing clustering algorithms respectively. When the devices' brands are split for creating a regression model, compared with two counting-based approaches, the proposed passenger estimation algorithm results in lower errors with a mean of 3.15 and a variance of 9.29.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNSE.2020.2998536</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4443-3353</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-4697 |
ispartof | IEEE transactions on network science and engineering, 2020-10, Vol.7 (4), p.2167-2181 |
issn | 2327-4697 2334-329X |
language | eng |
recordid | cdi_proquest_journals_2487440647 |
source | IEEE Xplore (Online service) |
subjects | Airports Algorithms Automation Clustering Clustering algorithms crowd mobility analytics Cyber-physical systems Estimation Global Positioning System Inertial platforms Inertial sensing devices Internet of Things Machine learning Mobile handsets Passengers pervasive computing Public transportation Railway stations Regression analysis Regression models Satellite navigation systems Smart cities Statistical analysis Tracking Wireless fidelity |
title | PassengerFlows: A Correlation-Based Passenger Estimator in Automated Public Transport |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PassengerFlows:%20A%20Correlation-Based%20Passenger%20Estimator%20in%20Automated%20Public%20Transport&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Wu,%20Fang-Jing&rft.date=2020-10-01&rft.volume=7&rft.issue=4&rft.spage=2167&rft.epage=2181&rft.pages=2167-2181&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2020.2998536&rft_dat=%3Cproquest_ieee_%3E2487440647%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-35b6316092cc065f06ddc3b1548a7276ee35ff0631c0729c285ddb4ceb057cbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487440647&rft_id=info:pmid/&rft_ieee_id=9103621&rfr_iscdi=true |