Loading…

PassengerFlows: A Correlation-Based Passenger Estimator in Automated Public Transport

Human mobility information is widely needed by many sectors in smart cities, especially for public transport. This work designs lightweight algorithms to perform stop detection , passenger flow tracking , and passenger estimation in an automated train. The on-board learning and detection algorithms...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on network science and engineering 2020-10, Vol.7 (4), p.2167-2181
Main Authors: Wu, Fang-Jing, Huang, Yunfeng, Doring, Lucas, Althoff, Stephanie, Bitterschulte, Kai, Chai, Keng Yip, Mao, Lidong, Grabarczyk, Damian, Kovacs, Erno
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-35b6316092cc065f06ddc3b1548a7276ee35ff0631c0729c285ddb4ceb057cbf3
cites cdi_FETCH-LOGICAL-c293t-35b6316092cc065f06ddc3b1548a7276ee35ff0631c0729c285ddb4ceb057cbf3
container_end_page 2181
container_issue 4
container_start_page 2167
container_title IEEE transactions on network science and engineering
container_volume 7
creator Wu, Fang-Jing
Huang, Yunfeng
Doring, Lucas
Althoff, Stephanie
Bitterschulte, Kai
Chai, Keng Yip
Mao, Lidong
Grabarczyk, Damian
Kovacs, Erno
description Human mobility information is widely needed by many sectors in smart cities, especially for public transport. This work designs lightweight algorithms to perform stop detection , passenger flow tracking , and passenger estimation in an automated train. The on-board learning and detection algorithms are running on an edge node that is integrated with Wi-Fi sniffing technology, a GPS sensor, and an inertial measurement unit (IMU) sensor. The stop detection algorithm determines if the automated train is static at which train station based on GPS and IMU data. When the train is moving, the correlations between statistical properties extracted from Wi-Fi probes and the actual number of passengers change. Therefore, two algorithms, passenger flow tracking and passenger estimation, are designed to analyze passenger mobility. The passenger flow tracking algorithm analyzes the number of incoming and outgoing passengers in the train. The passenger estimation algorithm approximates the number of passengers inside the train based on a multi-dimensional regression model created by statistical properties extracted from different device brands. The designed prototype is deployed in an automated hanging train to conduct real-world experiments. The experimental results indicate that the proposed passenger flow tracking algorithm reduces the average errors of 62.5\% and 70\% compared against two existing clustering algorithms respectively. When the devices' brands are split for creating a regression model, compared with two counting-based approaches, the proposed passenger estimation algorithm results in lower errors with a mean of 3.15 and a variance of 9.29.
doi_str_mv 10.1109/TNSE.2020.2998536
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2487440647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9103621</ieee_id><sourcerecordid>2487440647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-35b6316092cc065f06ddc3b1548a7276ee35ff0631c0729c285ddb4ceb057cbf3</originalsourceid><addsrcrecordid>eNo9kN9LwzAQgIMoOHR_gPhS8LnzkkuTxrc5NhWGCm7gW2jTVDpqM5MU8b-3ZWNP94Pv7riPkBsKM0pB3W9eP5YzBgxmTKk8Q3FGJgyRp8jU5_mYM5lyoeQlmYawAwDKcoGIE7J9L0Kw3Zf1q9b9hodkniyc97YtYuO69LEItkpOTLIMsfkuovNJ0yXzPrqhGIG-bBuTbHzRhb3z8Zpc1EUb7PQYr8h2tdwsntP129PLYr5ODVMYU8xKgVSAYsaAyGoQVWWwpBnPC8mksBazeugiNSCZMizPqqrkxpaQSVPWeEXuDnv33v30NkS9c73vhpOa8VxyDoLLgaIHyngXgre13vvhC_-nKehRoB4F6lGgPgocZm4PM4219sQrCigYxX-4ZWwt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487440647</pqid></control><display><type>article</type><title>PassengerFlows: A Correlation-Based Passenger Estimator in Automated Public Transport</title><source>IEEE Xplore (Online service)</source><creator>Wu, Fang-Jing ; Huang, Yunfeng ; Doring, Lucas ; Althoff, Stephanie ; Bitterschulte, Kai ; Chai, Keng Yip ; Mao, Lidong ; Grabarczyk, Damian ; Kovacs, Erno</creator><creatorcontrib>Wu, Fang-Jing ; Huang, Yunfeng ; Doring, Lucas ; Althoff, Stephanie ; Bitterschulte, Kai ; Chai, Keng Yip ; Mao, Lidong ; Grabarczyk, Damian ; Kovacs, Erno</creatorcontrib><description><![CDATA[Human mobility information is widely needed by many sectors in smart cities, especially for public transport. This work designs lightweight algorithms to perform stop detection , passenger flow tracking , and passenger estimation in an automated train. The on-board learning and detection algorithms are running on an edge node that is integrated with Wi-Fi sniffing technology, a GPS sensor, and an inertial measurement unit (IMU) sensor. The stop detection algorithm determines if the automated train is static at which train station based on GPS and IMU data. When the train is moving, the correlations between statistical properties extracted from Wi-Fi probes and the actual number of passengers change. Therefore, two algorithms, passenger flow tracking and passenger estimation, are designed to analyze passenger mobility. The passenger flow tracking algorithm analyzes the number of incoming and outgoing passengers in the train. The passenger estimation algorithm approximates the number of passengers inside the train based on a multi-dimensional regression model created by statistical properties extracted from different device brands. The designed prototype is deployed in an automated hanging train to conduct real-world experiments. The experimental results indicate that the proposed passenger flow tracking algorithm reduces the average errors of <inline-formula><tex-math notation="LaTeX">62.5\%</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">70\%</tex-math></inline-formula> compared against two existing clustering algorithms respectively. When the devices' brands are split for creating a regression model, compared with two counting-based approaches, the proposed passenger estimation algorithm results in lower errors with a mean of 3.15 and a variance of 9.29.]]></description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2020.2998536</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Airports ; Algorithms ; Automation ; Clustering ; Clustering algorithms ; crowd mobility analytics ; Cyber-physical systems ; Estimation ; Global Positioning System ; Inertial platforms ; Inertial sensing devices ; Internet of Things ; Machine learning ; Mobile handsets ; Passengers ; pervasive computing ; Public transportation ; Railway stations ; Regression analysis ; Regression models ; Satellite navigation systems ; Smart cities ; Statistical analysis ; Tracking ; Wireless fidelity</subject><ispartof>IEEE transactions on network science and engineering, 2020-10, Vol.7 (4), p.2167-2181</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-35b6316092cc065f06ddc3b1548a7276ee35ff0631c0729c285ddb4ceb057cbf3</citedby><cites>FETCH-LOGICAL-c293t-35b6316092cc065f06ddc3b1548a7276ee35ff0631c0729c285ddb4ceb057cbf3</cites><orcidid>0000-0003-4443-3353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9103621$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wu, Fang-Jing</creatorcontrib><creatorcontrib>Huang, Yunfeng</creatorcontrib><creatorcontrib>Doring, Lucas</creatorcontrib><creatorcontrib>Althoff, Stephanie</creatorcontrib><creatorcontrib>Bitterschulte, Kai</creatorcontrib><creatorcontrib>Chai, Keng Yip</creatorcontrib><creatorcontrib>Mao, Lidong</creatorcontrib><creatorcontrib>Grabarczyk, Damian</creatorcontrib><creatorcontrib>Kovacs, Erno</creatorcontrib><title>PassengerFlows: A Correlation-Based Passenger Estimator in Automated Public Transport</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description><![CDATA[Human mobility information is widely needed by many sectors in smart cities, especially for public transport. This work designs lightweight algorithms to perform stop detection , passenger flow tracking , and passenger estimation in an automated train. The on-board learning and detection algorithms are running on an edge node that is integrated with Wi-Fi sniffing technology, a GPS sensor, and an inertial measurement unit (IMU) sensor. The stop detection algorithm determines if the automated train is static at which train station based on GPS and IMU data. When the train is moving, the correlations between statistical properties extracted from Wi-Fi probes and the actual number of passengers change. Therefore, two algorithms, passenger flow tracking and passenger estimation, are designed to analyze passenger mobility. The passenger flow tracking algorithm analyzes the number of incoming and outgoing passengers in the train. The passenger estimation algorithm approximates the number of passengers inside the train based on a multi-dimensional regression model created by statistical properties extracted from different device brands. The designed prototype is deployed in an automated hanging train to conduct real-world experiments. The experimental results indicate that the proposed passenger flow tracking algorithm reduces the average errors of <inline-formula><tex-math notation="LaTeX">62.5\%</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">70\%</tex-math></inline-formula> compared against two existing clustering algorithms respectively. When the devices' brands are split for creating a regression model, compared with two counting-based approaches, the proposed passenger estimation algorithm results in lower errors with a mean of 3.15 and a variance of 9.29.]]></description><subject>Airports</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>crowd mobility analytics</subject><subject>Cyber-physical systems</subject><subject>Estimation</subject><subject>Global Positioning System</subject><subject>Inertial platforms</subject><subject>Inertial sensing devices</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Mobile handsets</subject><subject>Passengers</subject><subject>pervasive computing</subject><subject>Public transportation</subject><subject>Railway stations</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Satellite navigation systems</subject><subject>Smart cities</subject><subject>Statistical analysis</subject><subject>Tracking</subject><subject>Wireless fidelity</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQgIMoOHR_gPhS8LnzkkuTxrc5NhWGCm7gW2jTVDpqM5MU8b-3ZWNP94Pv7riPkBsKM0pB3W9eP5YzBgxmTKk8Q3FGJgyRp8jU5_mYM5lyoeQlmYawAwDKcoGIE7J9L0Kw3Zf1q9b9hodkniyc97YtYuO69LEItkpOTLIMsfkuovNJ0yXzPrqhGIG-bBuTbHzRhb3z8Zpc1EUb7PQYr8h2tdwsntP129PLYr5ODVMYU8xKgVSAYsaAyGoQVWWwpBnPC8mksBazeugiNSCZMizPqqrkxpaQSVPWeEXuDnv33v30NkS9c73vhpOa8VxyDoLLgaIHyngXgre13vvhC_-nKehRoB4F6lGgPgocZm4PM4219sQrCigYxX-4ZWwt</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wu, Fang-Jing</creator><creator>Huang, Yunfeng</creator><creator>Doring, Lucas</creator><creator>Althoff, Stephanie</creator><creator>Bitterschulte, Kai</creator><creator>Chai, Keng Yip</creator><creator>Mao, Lidong</creator><creator>Grabarczyk, Damian</creator><creator>Kovacs, Erno</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4443-3353</orcidid></search><sort><creationdate>20201001</creationdate><title>PassengerFlows: A Correlation-Based Passenger Estimator in Automated Public Transport</title><author>Wu, Fang-Jing ; Huang, Yunfeng ; Doring, Lucas ; Althoff, Stephanie ; Bitterschulte, Kai ; Chai, Keng Yip ; Mao, Lidong ; Grabarczyk, Damian ; Kovacs, Erno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-35b6316092cc065f06ddc3b1548a7276ee35ff0631c0729c285ddb4ceb057cbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airports</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>crowd mobility analytics</topic><topic>Cyber-physical systems</topic><topic>Estimation</topic><topic>Global Positioning System</topic><topic>Inertial platforms</topic><topic>Inertial sensing devices</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Mobile handsets</topic><topic>Passengers</topic><topic>pervasive computing</topic><topic>Public transportation</topic><topic>Railway stations</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Satellite navigation systems</topic><topic>Smart cities</topic><topic>Statistical analysis</topic><topic>Tracking</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Fang-Jing</creatorcontrib><creatorcontrib>Huang, Yunfeng</creatorcontrib><creatorcontrib>Doring, Lucas</creatorcontrib><creatorcontrib>Althoff, Stephanie</creatorcontrib><creatorcontrib>Bitterschulte, Kai</creatorcontrib><creatorcontrib>Chai, Keng Yip</creatorcontrib><creatorcontrib>Mao, Lidong</creatorcontrib><creatorcontrib>Grabarczyk, Damian</creatorcontrib><creatorcontrib>Kovacs, Erno</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Fang-Jing</au><au>Huang, Yunfeng</au><au>Doring, Lucas</au><au>Althoff, Stephanie</au><au>Bitterschulte, Kai</au><au>Chai, Keng Yip</au><au>Mao, Lidong</au><au>Grabarczyk, Damian</au><au>Kovacs, Erno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PassengerFlows: A Correlation-Based Passenger Estimator in Automated Public Transport</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>7</volume><issue>4</issue><spage>2167</spage><epage>2181</epage><pages>2167-2181</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract><![CDATA[Human mobility information is widely needed by many sectors in smart cities, especially for public transport. This work designs lightweight algorithms to perform stop detection , passenger flow tracking , and passenger estimation in an automated train. The on-board learning and detection algorithms are running on an edge node that is integrated with Wi-Fi sniffing technology, a GPS sensor, and an inertial measurement unit (IMU) sensor. The stop detection algorithm determines if the automated train is static at which train station based on GPS and IMU data. When the train is moving, the correlations between statistical properties extracted from Wi-Fi probes and the actual number of passengers change. Therefore, two algorithms, passenger flow tracking and passenger estimation, are designed to analyze passenger mobility. The passenger flow tracking algorithm analyzes the number of incoming and outgoing passengers in the train. The passenger estimation algorithm approximates the number of passengers inside the train based on a multi-dimensional regression model created by statistical properties extracted from different device brands. The designed prototype is deployed in an automated hanging train to conduct real-world experiments. The experimental results indicate that the proposed passenger flow tracking algorithm reduces the average errors of <inline-formula><tex-math notation="LaTeX">62.5\%</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">70\%</tex-math></inline-formula> compared against two existing clustering algorithms respectively. When the devices' brands are split for creating a regression model, compared with two counting-based approaches, the proposed passenger estimation algorithm results in lower errors with a mean of 3.15 and a variance of 9.29.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNSE.2020.2998536</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4443-3353</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4697
ispartof IEEE transactions on network science and engineering, 2020-10, Vol.7 (4), p.2167-2181
issn 2327-4697
2334-329X
language eng
recordid cdi_proquest_journals_2487440647
source IEEE Xplore (Online service)
subjects Airports
Algorithms
Automation
Clustering
Clustering algorithms
crowd mobility analytics
Cyber-physical systems
Estimation
Global Positioning System
Inertial platforms
Inertial sensing devices
Internet of Things
Machine learning
Mobile handsets
Passengers
pervasive computing
Public transportation
Railway stations
Regression analysis
Regression models
Satellite navigation systems
Smart cities
Statistical analysis
Tracking
Wireless fidelity
title PassengerFlows: A Correlation-Based Passenger Estimator in Automated Public Transport
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PassengerFlows:%20A%20Correlation-Based%20Passenger%20Estimator%20in%20Automated%20Public%20Transport&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Wu,%20Fang-Jing&rft.date=2020-10-01&rft.volume=7&rft.issue=4&rft.spage=2167&rft.epage=2181&rft.pages=2167-2181&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2020.2998536&rft_dat=%3Cproquest_ieee_%3E2487440647%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-35b6316092cc065f06ddc3b1548a7276ee35ff0631c0729c285ddb4ceb057cbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487440647&rft_id=info:pmid/&rft_ieee_id=9103621&rfr_iscdi=true