Loading…
Energy Optimization in Massive MIMO UAV-Aided MEC-Enabled Vehicular Networks
This paper presents a novel unmanned aerial vehicle (UAV) aided mobile edge computing (MEC) architecture for vehicular networks. It is considered that the vehicles should complete latency critical computation intensive tasks either locally with on-board computation units or by offloading part of the...
Saved in:
Published in: | arXiv.org 2021-03 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Michailidis, Emmanouel T Miridakis, Nikolaos I Michalas, Angelos Skondras, Emmanouil Vergados, Dimitrios J Vergados, Dimitrios D |
description | This paper presents a novel unmanned aerial vehicle (UAV) aided mobile edge computing (MEC) architecture for vehicular networks. It is considered that the vehicles should complete latency critical computation intensive tasks either locally with on-board computation units or by offloading part of their tasks to road side units (RSUs) with collocated MEC servers. In this direction, a hovering UAV can serve as an aerial RSU (ARSU) for task processing or act as an aerial relay and further offload the computation tasks to a ground RSU (GRSU). In order to significantly reduce the delay during data offloading and downloading, this architecture relies on the benefits of massive multiple input multiple output (MIMO). Therefore, it is considered that the vehicles, the ARSU, and the GRSU employ large scale antennas. A three dimensional (3D) geometrical representation of the MEC enabled network is introduced and an optimization method is proposed that minimizes the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power allocation, task allocation, and timeslot scheduling. The numerical results verify the theoretical derivations, emphasize on the effectiveness of the massive MIMO transmission, and provide useful engineering insights. |
doi_str_mv | 10.48550/arxiv.2102.03907 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2487645019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487645019</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-fb33746dff32859739c0da3d35ad653ff9309c683ba5e5273d59af12fad8da193</originalsourceid><addsrcrecordid>eNotjc1OhDAURhsTEyfjPIC7Jq7B0kspXRKCOgnIZpzt5EJb7YgwUhh_nl4SXX1ncXI-Qm4iFsapEOwOxy93DnnEeMhAMXlBVhwgCtKY8yuy8f7IGOOJ5ELAipRFb8aXb1qfJvfufnByQ09dTyv03p0NrbZVTZ-zfZA5bTStijwoemy6hffm1bVzhyN9MtPnML75a3JpsfNm879rsrsvdvljUNYP2zwrAxRcBbYBkHGirQWeCiVBtUwjaBCoEwHWKmCqTVJoUBjBJWih0Ebcok41RgrW5PYvexqHj9n46XAc5rFfHg88TmUSC7ZYv50iTdk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487645019</pqid></control><display><type>article</type><title>Energy Optimization in Massive MIMO UAV-Aided MEC-Enabled Vehicular Networks</title><source>Publicly Available Content (ProQuest)</source><creator>Michailidis, Emmanouel T ; Miridakis, Nikolaos I ; Michalas, Angelos ; Skondras, Emmanouil ; Vergados, Dimitrios J ; Vergados, Dimitrios D</creator><creatorcontrib>Michailidis, Emmanouel T ; Miridakis, Nikolaos I ; Michalas, Angelos ; Skondras, Emmanouil ; Vergados, Dimitrios J ; Vergados, Dimitrios D</creatorcontrib><description>This paper presents a novel unmanned aerial vehicle (UAV) aided mobile edge computing (MEC) architecture for vehicular networks. It is considered that the vehicles should complete latency critical computation intensive tasks either locally with on-board computation units or by offloading part of their tasks to road side units (RSUs) with collocated MEC servers. In this direction, a hovering UAV can serve as an aerial RSU (ARSU) for task processing or act as an aerial relay and further offload the computation tasks to a ground RSU (GRSU). In order to significantly reduce the delay during data offloading and downloading, this architecture relies on the benefits of massive multiple input multiple output (MIMO). Therefore, it is considered that the vehicles, the ARSU, and the GRSU employ large scale antennas. A three dimensional (3D) geometrical representation of the MEC enabled network is introduced and an optimization method is proposed that minimizes the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power allocation, task allocation, and timeslot scheduling. The numerical results verify the theoretical derivations, emphasize on the effectiveness of the massive MIMO transmission, and provide useful engineering insights.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2102.03907</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computation offloading ; Computer architecture ; Edge computing ; Energy consumption ; Hovering ; Mobile computing ; Network latency ; Optimization ; Power consumption ; Roadsides ; Task scheduling ; Unmanned aerial vehicles</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2487645019?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Michailidis, Emmanouel T</creatorcontrib><creatorcontrib>Miridakis, Nikolaos I</creatorcontrib><creatorcontrib>Michalas, Angelos</creatorcontrib><creatorcontrib>Skondras, Emmanouil</creatorcontrib><creatorcontrib>Vergados, Dimitrios J</creatorcontrib><creatorcontrib>Vergados, Dimitrios D</creatorcontrib><title>Energy Optimization in Massive MIMO UAV-Aided MEC-Enabled Vehicular Networks</title><title>arXiv.org</title><description>This paper presents a novel unmanned aerial vehicle (UAV) aided mobile edge computing (MEC) architecture for vehicular networks. It is considered that the vehicles should complete latency critical computation intensive tasks either locally with on-board computation units or by offloading part of their tasks to road side units (RSUs) with collocated MEC servers. In this direction, a hovering UAV can serve as an aerial RSU (ARSU) for task processing or act as an aerial relay and further offload the computation tasks to a ground RSU (GRSU). In order to significantly reduce the delay during data offloading and downloading, this architecture relies on the benefits of massive multiple input multiple output (MIMO). Therefore, it is considered that the vehicles, the ARSU, and the GRSU employ large scale antennas. A three dimensional (3D) geometrical representation of the MEC enabled network is introduced and an optimization method is proposed that minimizes the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power allocation, task allocation, and timeslot scheduling. The numerical results verify the theoretical derivations, emphasize on the effectiveness of the massive MIMO transmission, and provide useful engineering insights.</description><subject>Computation offloading</subject><subject>Computer architecture</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Hovering</subject><subject>Mobile computing</subject><subject>Network latency</subject><subject>Optimization</subject><subject>Power consumption</subject><subject>Roadsides</subject><subject>Task scheduling</subject><subject>Unmanned aerial vehicles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc1OhDAURhsTEyfjPIC7Jq7B0kspXRKCOgnIZpzt5EJb7YgwUhh_nl4SXX1ncXI-Qm4iFsapEOwOxy93DnnEeMhAMXlBVhwgCtKY8yuy8f7IGOOJ5ELAipRFb8aXb1qfJvfufnByQ09dTyv03p0NrbZVTZ-zfZA5bTStijwoemy6hffm1bVzhyN9MtPnML75a3JpsfNm879rsrsvdvljUNYP2zwrAxRcBbYBkHGirQWeCiVBtUwjaBCoEwHWKmCqTVJoUBjBJWih0Ebcok41RgrW5PYvexqHj9n46XAc5rFfHg88TmUSC7ZYv50iTdk</recordid><startdate>20210330</startdate><enddate>20210330</enddate><creator>Michailidis, Emmanouel T</creator><creator>Miridakis, Nikolaos I</creator><creator>Michalas, Angelos</creator><creator>Skondras, Emmanouil</creator><creator>Vergados, Dimitrios J</creator><creator>Vergados, Dimitrios D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210330</creationdate><title>Energy Optimization in Massive MIMO UAV-Aided MEC-Enabled Vehicular Networks</title><author>Michailidis, Emmanouel T ; Miridakis, Nikolaos I ; Michalas, Angelos ; Skondras, Emmanouil ; Vergados, Dimitrios J ; Vergados, Dimitrios D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-fb33746dff32859739c0da3d35ad653ff9309c683ba5e5273d59af12fad8da193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computation offloading</topic><topic>Computer architecture</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Hovering</topic><topic>Mobile computing</topic><topic>Network latency</topic><topic>Optimization</topic><topic>Power consumption</topic><topic>Roadsides</topic><topic>Task scheduling</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Michailidis, Emmanouel T</creatorcontrib><creatorcontrib>Miridakis, Nikolaos I</creatorcontrib><creatorcontrib>Michalas, Angelos</creatorcontrib><creatorcontrib>Skondras, Emmanouil</creatorcontrib><creatorcontrib>Vergados, Dimitrios J</creatorcontrib><creatorcontrib>Vergados, Dimitrios D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michailidis, Emmanouel T</au><au>Miridakis, Nikolaos I</au><au>Michalas, Angelos</au><au>Skondras, Emmanouil</au><au>Vergados, Dimitrios J</au><au>Vergados, Dimitrios D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Optimization in Massive MIMO UAV-Aided MEC-Enabled Vehicular Networks</atitle><jtitle>arXiv.org</jtitle><date>2021-03-30</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>This paper presents a novel unmanned aerial vehicle (UAV) aided mobile edge computing (MEC) architecture for vehicular networks. It is considered that the vehicles should complete latency critical computation intensive tasks either locally with on-board computation units or by offloading part of their tasks to road side units (RSUs) with collocated MEC servers. In this direction, a hovering UAV can serve as an aerial RSU (ARSU) for task processing or act as an aerial relay and further offload the computation tasks to a ground RSU (GRSU). In order to significantly reduce the delay during data offloading and downloading, this architecture relies on the benefits of massive multiple input multiple output (MIMO). Therefore, it is considered that the vehicles, the ARSU, and the GRSU employ large scale antennas. A three dimensional (3D) geometrical representation of the MEC enabled network is introduced and an optimization method is proposed that minimizes the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power allocation, task allocation, and timeslot scheduling. The numerical results verify the theoretical derivations, emphasize on the effectiveness of the massive MIMO transmission, and provide useful engineering insights.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2102.03907</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2487645019 |
source | Publicly Available Content (ProQuest) |
subjects | Computation offloading Computer architecture Edge computing Energy consumption Hovering Mobile computing Network latency Optimization Power consumption Roadsides Task scheduling Unmanned aerial vehicles |
title | Energy Optimization in Massive MIMO UAV-Aided MEC-Enabled Vehicular Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Optimization%20in%20Massive%20MIMO%20UAV-Aided%20MEC-Enabled%20Vehicular%20Networks&rft.jtitle=arXiv.org&rft.au=Michailidis,%20Emmanouel%20T&rft.date=2021-03-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2102.03907&rft_dat=%3Cproquest%3E2487645019%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-fb33746dff32859739c0da3d35ad653ff9309c683ba5e5273d59af12fad8da193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487645019&rft_id=info:pmid/&rfr_iscdi=true |