Loading…

Energy Optimization in Massive MIMO UAV-Aided MEC-Enabled Vehicular Networks

This paper presents a novel unmanned aerial vehicle (UAV) aided mobile edge computing (MEC) architecture for vehicular networks. It is considered that the vehicles should complete latency critical computation intensive tasks either locally with on-board computation units or by offloading part of the...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-03
Main Authors: Michailidis, Emmanouel T, Miridakis, Nikolaos I, Michalas, Angelos, Skondras, Emmanouil, Vergados, Dimitrios J, Vergados, Dimitrios D
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Michailidis, Emmanouel T
Miridakis, Nikolaos I
Michalas, Angelos
Skondras, Emmanouil
Vergados, Dimitrios J
Vergados, Dimitrios D
description This paper presents a novel unmanned aerial vehicle (UAV) aided mobile edge computing (MEC) architecture for vehicular networks. It is considered that the vehicles should complete latency critical computation intensive tasks either locally with on-board computation units or by offloading part of their tasks to road side units (RSUs) with collocated MEC servers. In this direction, a hovering UAV can serve as an aerial RSU (ARSU) for task processing or act as an aerial relay and further offload the computation tasks to a ground RSU (GRSU). In order to significantly reduce the delay during data offloading and downloading, this architecture relies on the benefits of massive multiple input multiple output (MIMO). Therefore, it is considered that the vehicles, the ARSU, and the GRSU employ large scale antennas. A three dimensional (3D) geometrical representation of the MEC enabled network is introduced and an optimization method is proposed that minimizes the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power allocation, task allocation, and timeslot scheduling. The numerical results verify the theoretical derivations, emphasize on the effectiveness of the massive MIMO transmission, and provide useful engineering insights.
doi_str_mv 10.48550/arxiv.2102.03907
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2487645019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487645019</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-fb33746dff32859739c0da3d35ad653ff9309c683ba5e5273d59af12fad8da193</originalsourceid><addsrcrecordid>eNotjc1OhDAURhsTEyfjPIC7Jq7B0kspXRKCOgnIZpzt5EJb7YgwUhh_nl4SXX1ncXI-Qm4iFsapEOwOxy93DnnEeMhAMXlBVhwgCtKY8yuy8f7IGOOJ5ELAipRFb8aXb1qfJvfufnByQ09dTyv03p0NrbZVTZ-zfZA5bTStijwoemy6hffm1bVzhyN9MtPnML75a3JpsfNm879rsrsvdvljUNYP2zwrAxRcBbYBkHGirQWeCiVBtUwjaBCoEwHWKmCqTVJoUBjBJWih0Ebcok41RgrW5PYvexqHj9n46XAc5rFfHg88TmUSC7ZYv50iTdk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487645019</pqid></control><display><type>article</type><title>Energy Optimization in Massive MIMO UAV-Aided MEC-Enabled Vehicular Networks</title><source>Publicly Available Content (ProQuest)</source><creator>Michailidis, Emmanouel T ; Miridakis, Nikolaos I ; Michalas, Angelos ; Skondras, Emmanouil ; Vergados, Dimitrios J ; Vergados, Dimitrios D</creator><creatorcontrib>Michailidis, Emmanouel T ; Miridakis, Nikolaos I ; Michalas, Angelos ; Skondras, Emmanouil ; Vergados, Dimitrios J ; Vergados, Dimitrios D</creatorcontrib><description>This paper presents a novel unmanned aerial vehicle (UAV) aided mobile edge computing (MEC) architecture for vehicular networks. It is considered that the vehicles should complete latency critical computation intensive tasks either locally with on-board computation units or by offloading part of their tasks to road side units (RSUs) with collocated MEC servers. In this direction, a hovering UAV can serve as an aerial RSU (ARSU) for task processing or act as an aerial relay and further offload the computation tasks to a ground RSU (GRSU). In order to significantly reduce the delay during data offloading and downloading, this architecture relies on the benefits of massive multiple input multiple output (MIMO). Therefore, it is considered that the vehicles, the ARSU, and the GRSU employ large scale antennas. A three dimensional (3D) geometrical representation of the MEC enabled network is introduced and an optimization method is proposed that minimizes the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power allocation, task allocation, and timeslot scheduling. The numerical results verify the theoretical derivations, emphasize on the effectiveness of the massive MIMO transmission, and provide useful engineering insights.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2102.03907</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computation offloading ; Computer architecture ; Edge computing ; Energy consumption ; Hovering ; Mobile computing ; Network latency ; Optimization ; Power consumption ; Roadsides ; Task scheduling ; Unmanned aerial vehicles</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2487645019?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Michailidis, Emmanouel T</creatorcontrib><creatorcontrib>Miridakis, Nikolaos I</creatorcontrib><creatorcontrib>Michalas, Angelos</creatorcontrib><creatorcontrib>Skondras, Emmanouil</creatorcontrib><creatorcontrib>Vergados, Dimitrios J</creatorcontrib><creatorcontrib>Vergados, Dimitrios D</creatorcontrib><title>Energy Optimization in Massive MIMO UAV-Aided MEC-Enabled Vehicular Networks</title><title>arXiv.org</title><description>This paper presents a novel unmanned aerial vehicle (UAV) aided mobile edge computing (MEC) architecture for vehicular networks. It is considered that the vehicles should complete latency critical computation intensive tasks either locally with on-board computation units or by offloading part of their tasks to road side units (RSUs) with collocated MEC servers. In this direction, a hovering UAV can serve as an aerial RSU (ARSU) for task processing or act as an aerial relay and further offload the computation tasks to a ground RSU (GRSU). In order to significantly reduce the delay during data offloading and downloading, this architecture relies on the benefits of massive multiple input multiple output (MIMO). Therefore, it is considered that the vehicles, the ARSU, and the GRSU employ large scale antennas. A three dimensional (3D) geometrical representation of the MEC enabled network is introduced and an optimization method is proposed that minimizes the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power allocation, task allocation, and timeslot scheduling. The numerical results verify the theoretical derivations, emphasize on the effectiveness of the massive MIMO transmission, and provide useful engineering insights.</description><subject>Computation offloading</subject><subject>Computer architecture</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Hovering</subject><subject>Mobile computing</subject><subject>Network latency</subject><subject>Optimization</subject><subject>Power consumption</subject><subject>Roadsides</subject><subject>Task scheduling</subject><subject>Unmanned aerial vehicles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc1OhDAURhsTEyfjPIC7Jq7B0kspXRKCOgnIZpzt5EJb7YgwUhh_nl4SXX1ncXI-Qm4iFsapEOwOxy93DnnEeMhAMXlBVhwgCtKY8yuy8f7IGOOJ5ELAipRFb8aXb1qfJvfufnByQ09dTyv03p0NrbZVTZ-zfZA5bTStijwoemy6hffm1bVzhyN9MtPnML75a3JpsfNm879rsrsvdvljUNYP2zwrAxRcBbYBkHGirQWeCiVBtUwjaBCoEwHWKmCqTVJoUBjBJWih0Ebcok41RgrW5PYvexqHj9n46XAc5rFfHg88TmUSC7ZYv50iTdk</recordid><startdate>20210330</startdate><enddate>20210330</enddate><creator>Michailidis, Emmanouel T</creator><creator>Miridakis, Nikolaos I</creator><creator>Michalas, Angelos</creator><creator>Skondras, Emmanouil</creator><creator>Vergados, Dimitrios J</creator><creator>Vergados, Dimitrios D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210330</creationdate><title>Energy Optimization in Massive MIMO UAV-Aided MEC-Enabled Vehicular Networks</title><author>Michailidis, Emmanouel T ; Miridakis, Nikolaos I ; Michalas, Angelos ; Skondras, Emmanouil ; Vergados, Dimitrios J ; Vergados, Dimitrios D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-fb33746dff32859739c0da3d35ad653ff9309c683ba5e5273d59af12fad8da193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computation offloading</topic><topic>Computer architecture</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Hovering</topic><topic>Mobile computing</topic><topic>Network latency</topic><topic>Optimization</topic><topic>Power consumption</topic><topic>Roadsides</topic><topic>Task scheduling</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Michailidis, Emmanouel T</creatorcontrib><creatorcontrib>Miridakis, Nikolaos I</creatorcontrib><creatorcontrib>Michalas, Angelos</creatorcontrib><creatorcontrib>Skondras, Emmanouil</creatorcontrib><creatorcontrib>Vergados, Dimitrios J</creatorcontrib><creatorcontrib>Vergados, Dimitrios D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michailidis, Emmanouel T</au><au>Miridakis, Nikolaos I</au><au>Michalas, Angelos</au><au>Skondras, Emmanouil</au><au>Vergados, Dimitrios J</au><au>Vergados, Dimitrios D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Optimization in Massive MIMO UAV-Aided MEC-Enabled Vehicular Networks</atitle><jtitle>arXiv.org</jtitle><date>2021-03-30</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>This paper presents a novel unmanned aerial vehicle (UAV) aided mobile edge computing (MEC) architecture for vehicular networks. It is considered that the vehicles should complete latency critical computation intensive tasks either locally with on-board computation units or by offloading part of their tasks to road side units (RSUs) with collocated MEC servers. In this direction, a hovering UAV can serve as an aerial RSU (ARSU) for task processing or act as an aerial relay and further offload the computation tasks to a ground RSU (GRSU). In order to significantly reduce the delay during data offloading and downloading, this architecture relies on the benefits of massive multiple input multiple output (MIMO). Therefore, it is considered that the vehicles, the ARSU, and the GRSU employ large scale antennas. A three dimensional (3D) geometrical representation of the MEC enabled network is introduced and an optimization method is proposed that minimizes the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power allocation, task allocation, and timeslot scheduling. The numerical results verify the theoretical derivations, emphasize on the effectiveness of the massive MIMO transmission, and provide useful engineering insights.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2102.03907</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2487645019
source Publicly Available Content (ProQuest)
subjects Computation offloading
Computer architecture
Edge computing
Energy consumption
Hovering
Mobile computing
Network latency
Optimization
Power consumption
Roadsides
Task scheduling
Unmanned aerial vehicles
title Energy Optimization in Massive MIMO UAV-Aided MEC-Enabled Vehicular Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Optimization%20in%20Massive%20MIMO%20UAV-Aided%20MEC-Enabled%20Vehicular%20Networks&rft.jtitle=arXiv.org&rft.au=Michailidis,%20Emmanouel%20T&rft.date=2021-03-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2102.03907&rft_dat=%3Cproquest%3E2487645019%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-fb33746dff32859739c0da3d35ad653ff9309c683ba5e5273d59af12fad8da193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487645019&rft_id=info:pmid/&rfr_iscdi=true