Loading…

Assessing Fairness in Classification Parity of Machine Learning Models in Healthcare

Fairness in AI and machine learning systems has become a fundamental problem in the accountability of AI systems. While the need for accountability of AI models is near ubiquitous, healthcare in particular is a challenging field where accountability of such systems takes upon additional importance,...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-02
Main Authors: Yuan, Ming, Kumar, Vikas, Ahmad, Muhammad Aurangzeb, Teredesai, Ankur
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yuan, Ming
Kumar, Vikas
Ahmad, Muhammad Aurangzeb
Teredesai, Ankur
description Fairness in AI and machine learning systems has become a fundamental problem in the accountability of AI systems. While the need for accountability of AI models is near ubiquitous, healthcare in particular is a challenging field where accountability of such systems takes upon additional importance, as decisions in healthcare can have life altering consequences. In this paper we present preliminary results on fairness in the context of classification parity in healthcare. We also present some exploratory methods to improve fairness and choosing appropriate classification algorithms in the context of healthcare.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2487657331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487657331</sourcerecordid><originalsourceid>FETCH-proquest_journals_24876573313</originalsourceid><addsrcrecordid>eNqNjs0KwjAQhIMgWLTvEPBcqEn_rlIsPSh46L0sdWtTQqLZ9ODbG8UH8DTDzHwwKxYJKQ9JlQmxYTHRnKapKEqR5zJi3ZEIiZS58waUM8FzZXitIYSjGsAra_gVnPIvbkd-gWFSBvkZwZkPdbE31F-mRdB-GsDhjq1H0ITxT7ds35y6uk0ezj4XJN_PdnEmVL3IqrLIy3BQ_rd6A2m9QEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487657331</pqid></control><display><type>article</type><title>Assessing Fairness in Classification Parity of Machine Learning Models in Healthcare</title><source>Publicly Available Content Database</source><creator>Yuan, Ming ; Kumar, Vikas ; Ahmad, Muhammad Aurangzeb ; Teredesai, Ankur</creator><creatorcontrib>Yuan, Ming ; Kumar, Vikas ; Ahmad, Muhammad Aurangzeb ; Teredesai, Ankur</creatorcontrib><description>Fairness in AI and machine learning systems has become a fundamental problem in the accountability of AI systems. While the need for accountability of AI models is near ubiquitous, healthcare in particular is a challenging field where accountability of such systems takes upon additional importance, as decisions in healthcare can have life altering consequences. In this paper we present preliminary results on fairness in the context of classification parity in healthcare. We also present some exploratory methods to improve fairness and choosing appropriate classification algorithms in the context of healthcare.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accountability ; Algorithms ; Artificial intelligence ; Classification ; Context ; Health care ; Machine learning ; Parity</subject><ispartof>arXiv.org, 2021-02</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2487657331?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Yuan, Ming</creatorcontrib><creatorcontrib>Kumar, Vikas</creatorcontrib><creatorcontrib>Ahmad, Muhammad Aurangzeb</creatorcontrib><creatorcontrib>Teredesai, Ankur</creatorcontrib><title>Assessing Fairness in Classification Parity of Machine Learning Models in Healthcare</title><title>arXiv.org</title><description>Fairness in AI and machine learning systems has become a fundamental problem in the accountability of AI systems. While the need for accountability of AI models is near ubiquitous, healthcare in particular is a challenging field where accountability of such systems takes upon additional importance, as decisions in healthcare can have life altering consequences. In this paper we present preliminary results on fairness in the context of classification parity in healthcare. We also present some exploratory methods to improve fairness and choosing appropriate classification algorithms in the context of healthcare.</description><subject>Accountability</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Context</subject><subject>Health care</subject><subject>Machine learning</subject><subject>Parity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjs0KwjAQhIMgWLTvEPBcqEn_rlIsPSh46L0sdWtTQqLZ9ODbG8UH8DTDzHwwKxYJKQ9JlQmxYTHRnKapKEqR5zJi3ZEIiZS58waUM8FzZXitIYSjGsAra_gVnPIvbkd-gWFSBvkZwZkPdbE31F-mRdB-GsDhjq1H0ITxT7ds35y6uk0ezj4XJN_PdnEmVL3IqrLIy3BQ_rd6A2m9QEI</recordid><startdate>20210207</startdate><enddate>20210207</enddate><creator>Yuan, Ming</creator><creator>Kumar, Vikas</creator><creator>Ahmad, Muhammad Aurangzeb</creator><creator>Teredesai, Ankur</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210207</creationdate><title>Assessing Fairness in Classification Parity of Machine Learning Models in Healthcare</title><author>Yuan, Ming ; Kumar, Vikas ; Ahmad, Muhammad Aurangzeb ; Teredesai, Ankur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24876573313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accountability</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Context</topic><topic>Health care</topic><topic>Machine learning</topic><topic>Parity</topic><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Ming</creatorcontrib><creatorcontrib>Kumar, Vikas</creatorcontrib><creatorcontrib>Ahmad, Muhammad Aurangzeb</creatorcontrib><creatorcontrib>Teredesai, Ankur</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Ming</au><au>Kumar, Vikas</au><au>Ahmad, Muhammad Aurangzeb</au><au>Teredesai, Ankur</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Assessing Fairness in Classification Parity of Machine Learning Models in Healthcare</atitle><jtitle>arXiv.org</jtitle><date>2021-02-07</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Fairness in AI and machine learning systems has become a fundamental problem in the accountability of AI systems. While the need for accountability of AI models is near ubiquitous, healthcare in particular is a challenging field where accountability of such systems takes upon additional importance, as decisions in healthcare can have life altering consequences. In this paper we present preliminary results on fairness in the context of classification parity in healthcare. We also present some exploratory methods to improve fairness and choosing appropriate classification algorithms in the context of healthcare.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2487657331
source Publicly Available Content Database
subjects Accountability
Algorithms
Artificial intelligence
Classification
Context
Health care
Machine learning
Parity
title Assessing Fairness in Classification Parity of Machine Learning Models in Healthcare
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Assessing%20Fairness%20in%20Classification%20Parity%20of%20Machine%20Learning%20Models%20in%20Healthcare&rft.jtitle=arXiv.org&rft.au=Yuan,%20Ming&rft.date=2021-02-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2487657331%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24876573313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487657331&rft_id=info:pmid/&rfr_iscdi=true