Loading…
Scalable quantum computer with superconducting circuits in the ultrastrong coupling regime
So far, superconducting quantum computers have certain constraints on qubit connectivity, such as nearest-neighbor couplings. To overcome this limitation, we propose a scalable architecture to simultaneously connect several pairs of distant qubits via a dispersively coupled quantum bus. The building...
Saved in:
Published in: | npj quantum information 2020-08, Vol.6 (1), Article 67 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | So far, superconducting quantum computers have certain constraints on qubit connectivity, such as nearest-neighbor couplings. To overcome this limitation, we propose a scalable architecture to simultaneously connect several pairs of distant qubits via a dispersively coupled quantum bus. The building block of the bus is composed of orthogonal coplanar waveguide resonators connected through ancillary flux qubits working in the ultrastrong coupling regime. This regime activates virtual processes that boost the effective qubit–qubit interaction, which results in quantum gates on the nanosecond timescale. The interaction is switchable and preserves the coherence of the qubits. |
---|---|
ISSN: | 2056-6387 2056-6387 |
DOI: | 10.1038/s41534-020-00294-x |