Loading…
Real-time processing of stabilizer measurements in a bit-flip code
Although qubit coherence times and gate fidelities are continuously improving, logical encoding is essential to achieve fault tolerance in quantum computing. In most encoding schemes, correcting or tracking errors throughout the computation is necessary to implement a universal gate set without addi...
Saved in:
Published in: | npj quantum information 2020-08, Vol.6 (1), Article 71 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although qubit coherence times and gate fidelities are continuously improving, logical encoding is essential to achieve fault tolerance in quantum computing. In most encoding schemes, correcting or tracking errors throughout the computation is necessary to implement a universal gate set without adding significant delays in the processor. Here, we realize a classical control architecture for the fast extraction of errors based on multiple cycles of stabilizer measurements and subsequent correction. We demonstrate its application on a minimal bit-flip code with five transmon qubits, showing that real-time decoding and correction based on multiple stabilizers is superior in both speed and fidelity to repeated correction based on individual cycles. Furthermore, the encoded qubit can be rapidly measured, thus enabling conditional operations that rely on feed forward, such as logical gates. This co-processing of classical and quantum information will be crucial in running a logical circuit at its full speed to outpace error accumulation. |
---|---|
ISSN: | 2056-6387 2056-6387 |
DOI: | 10.1038/s41534-020-00304-y |