Loading…

Performance improvement of the biradial self-rectifying impulse air-turbine for wave energy conversion by multi-row guide vanes: Design and experimental results

Self-rectifying impulse turbines are a popular alternative to the Wells turbine for oscillating-water-column wave energy converters. Self-rectifying impulse turbines have two sets of guide-vanes, one set placed symmetrically on each side of the rotor, instead of a single set as in unidirectional tur...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2021-02, Vol.216, p.119110, Article 119110
Main Authors: Gato, L.M.C., Maduro, A.R., Carrelhas, A.A.D., Henriques, J.C.C., Ferreira, D.N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Self-rectifying impulse turbines are a popular alternative to the Wells turbine for oscillating-water-column wave energy converters. Self-rectifying impulse turbines have two sets of guide-vanes, one set placed symmetrically on each side of the rotor, instead of a single set as in unidirectional turbines. The efficiency of self-rectifying turbines with fixed guide-vanes is known to be severely affected by the large aerodynamic losses due to the inherent misalignment between the outflow from the rotor and the downstream guide-vanes. The biradial turbine is an advanced, more efficient, version of the impulse self-rectifying turbine, as compared with the conventional axial-flow type. The paper presents a new topology for the radially-set guide-vane system arranged into multiple, rather than simple, rows, aiming to increase the turbine efficiency by reducing the losses by aerodynamic outflow stalling at the exit guide-vane system while ensuring the required inflow deflection by the inlet guide vanes. The design method combines an evolutionary optimisation algorithm with cascade-flow CFD RANS calculations. Experimental results are presented to validate the design method and to assess the performance and flow-losses of the single and double-row guide-vane system configurations. •Single-row stator configuration high blockage severely penalises turbine efficiency.•Multiple-row guide-vane systems reduce rotor outflow obstruction.•Turbine peak efficiency increased by using a novel double-row guide-vane system.
ISSN:0360-5442
1873-6785
DOI:10.1016/j.energy.2020.119110