Loading…
Allele‐specific expression and gene regulation help explain transgressive thermal tolerance in non‐native hybrids of the endangered California tiger salamander (Ambystoma californiense)
Hybridization between native and non‐native species is an ongoing global conservation threat. Hybrids that exhibit traits and tolerances that surpass parental values are of particular concern, given their potential to outperform native species. Effective management of hybrid populations requires an...
Saved in:
Published in: | Molecular ecology 2021-02, Vol.30 (4), p.987-1004 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2509-33e15ff58ab06ffd9b64b2573657d054f7e5de94f5724a98e48f5f11f577e6713 |
---|---|
cites | cdi_FETCH-LOGICAL-c2509-33e15ff58ab06ffd9b64b2573657d054f7e5de94f5724a98e48f5f11f577e6713 |
container_end_page | 1004 |
container_issue | 4 |
container_start_page | 987 |
container_title | Molecular ecology |
container_volume | 30 |
creator | Cooper, Robert D. Shaffer, H. Bradley |
description | Hybridization between native and non‐native species is an ongoing global conservation threat. Hybrids that exhibit traits and tolerances that surpass parental values are of particular concern, given their potential to outperform native species. Effective management of hybrid populations requires an understanding of both physiological performance and the underlying mechanisms that drive transgressive hybrid traits. Here, we explore several aspects of the hybridization between the endangered California tiger salamander (Ambystoma californiense; CTS) and the introduced barred tiger salamander (Ambystoma mavortium; BTS). We assayed critical thermal maximum (CTMax) to compare the ability of CTS, BTS and F1 hybrids to tolerate acute thermal stress, and found that hybrids exhibit a wide range of CTMax values, with 33% (4/12) able to tolerate temperatures greater than either parent. We then quantified the genomic response, measured at the RNA transcript level, of each salamander, to explore the mechanisms underlying thermal tolerance strategies. We found that CTS and BTS have strikingly different values and tissue‐specific patterns of overall gene expression, with hybrids expressing intermediate values. F1 hybrids display abundant and variable degrees of allele‐specific expression (ASE), likely arising from extensive compensatory evolution in gene regulatory mechanisms between CTS and BTS. We found evidence that the proportion of genes with allelic imbalance in individual hybrids correlates with their CTMax, suggesting a link between ASE and expanded thermal tolerance that may contribute to the success of hybrid salamanders in California. Future climate change may further complicate management of CTS if hybrid salamanders are better equipped to deal with rising temperatures. |
doi_str_mv | 10.1111/mec.15779 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489055179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489055179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2509-33e15ff58ab06ffd9b64b2573657d054f7e5de94f5724a98e48f5f11f577e6713</originalsourceid><addsrcrecordid>eNp1kUFO3DAUhi3UqkxpF1wAWWJTFgE7ieN4ORpBiwTqBqTuIid5njFy7GBngNn1CFyol-lJ-oYBdn0b28-fP1v-CTnk7JRjnQ3QnXIhpdojM15UIstV-esDmTFV5RlndbFPPqd0xxgvciE-kf0Cq86VnJE_c-fAwd_fz2mEzhrbUXgaI6Rkg6fa93QJHmiE5drpadtbgRu3jNPW0ylqn5Yv-APQaQVx0I5OwQFudEAR8cGj3eNhJFabNto-0WC2MAXfa7-ECD1daGdNiN5qOlls0aSdHvABOP02H9pNmsKgafeGgU9w8oV8NNol-Po6HpDbi_ObxY_s6uf3y8X8KutywVRWFMCFMaLWLauM6VVblW0uJH6V7JkojQTRgyqNkHmpVQ1lbYThHNcSKsmLA3K8844x3K8hTc1dWEePVzZ5WSsmBJcKqZMd1cWQUgTTjNEOOm4azpptUA0G1bwEhezRq3HdDtC_k2_JIHC2Ax6tg83_Tc31-WKn_AeZg6O4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489055179</pqid></control><display><type>article</type><title>Allele‐specific expression and gene regulation help explain transgressive thermal tolerance in non‐native hybrids of the endangered California tiger salamander (Ambystoma californiense)</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Cooper, Robert D. ; Shaffer, H. Bradley</creator><creatorcontrib>Cooper, Robert D. ; Shaffer, H. Bradley</creatorcontrib><description>Hybridization between native and non‐native species is an ongoing global conservation threat. Hybrids that exhibit traits and tolerances that surpass parental values are of particular concern, given their potential to outperform native species. Effective management of hybrid populations requires an understanding of both physiological performance and the underlying mechanisms that drive transgressive hybrid traits. Here, we explore several aspects of the hybridization between the endangered California tiger salamander (Ambystoma californiense; CTS) and the introduced barred tiger salamander (Ambystoma mavortium; BTS). We assayed critical thermal maximum (CTMax) to compare the ability of CTS, BTS and F1 hybrids to tolerate acute thermal stress, and found that hybrids exhibit a wide range of CTMax values, with 33% (4/12) able to tolerate temperatures greater than either parent. We then quantified the genomic response, measured at the RNA transcript level, of each salamander, to explore the mechanisms underlying thermal tolerance strategies. We found that CTS and BTS have strikingly different values and tissue‐specific patterns of overall gene expression, with hybrids expressing intermediate values. F1 hybrids display abundant and variable degrees of allele‐specific expression (ASE), likely arising from extensive compensatory evolution in gene regulatory mechanisms between CTS and BTS. We found evidence that the proportion of genes with allelic imbalance in individual hybrids correlates with their CTMax, suggesting a link between ASE and expanded thermal tolerance that may contribute to the success of hybrid salamanders in California. Future climate change may further complicate management of CTS if hybrid salamanders are better equipped to deal with rising temperatures.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.15779</identifier><identifier>PMID: 33338297</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Alleles ; Ambystoma californiense ; Amphibians ; Climate change ; comparative physiology ; conservation genetics ; Gene expression ; Gene regulation ; Hybridization ; Hybrids ; Indigenous species ; Introduced species ; Native species ; Regulatory mechanisms (biology) ; Reptiles & amphibians ; Ribonucleic acid ; RNA ; Temperature tolerance ; Thermal stress ; Tolerances ; Transcription ; transcriptomics ; Wildlife conservation</subject><ispartof>Molecular ecology, 2021-02, Vol.30 (4), p.987-1004</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons Ltd.</rights><rights>Copyright © 2021 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2509-33e15ff58ab06ffd9b64b2573657d054f7e5de94f5724a98e48f5f11f577e6713</citedby><cites>FETCH-LOGICAL-c2509-33e15ff58ab06ffd9b64b2573657d054f7e5de94f5724a98e48f5f11f577e6713</cites><orcidid>0000-0003-0194-329X ; 0000-0002-5795-9242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33338297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, Robert D.</creatorcontrib><creatorcontrib>Shaffer, H. Bradley</creatorcontrib><title>Allele‐specific expression and gene regulation help explain transgressive thermal tolerance in non‐native hybrids of the endangered California tiger salamander (Ambystoma californiense)</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Hybridization between native and non‐native species is an ongoing global conservation threat. Hybrids that exhibit traits and tolerances that surpass parental values are of particular concern, given their potential to outperform native species. Effective management of hybrid populations requires an understanding of both physiological performance and the underlying mechanisms that drive transgressive hybrid traits. Here, we explore several aspects of the hybridization between the endangered California tiger salamander (Ambystoma californiense; CTS) and the introduced barred tiger salamander (Ambystoma mavortium; BTS). We assayed critical thermal maximum (CTMax) to compare the ability of CTS, BTS and F1 hybrids to tolerate acute thermal stress, and found that hybrids exhibit a wide range of CTMax values, with 33% (4/12) able to tolerate temperatures greater than either parent. We then quantified the genomic response, measured at the RNA transcript level, of each salamander, to explore the mechanisms underlying thermal tolerance strategies. We found that CTS and BTS have strikingly different values and tissue‐specific patterns of overall gene expression, with hybrids expressing intermediate values. F1 hybrids display abundant and variable degrees of allele‐specific expression (ASE), likely arising from extensive compensatory evolution in gene regulatory mechanisms between CTS and BTS. We found evidence that the proportion of genes with allelic imbalance in individual hybrids correlates with their CTMax, suggesting a link between ASE and expanded thermal tolerance that may contribute to the success of hybrid salamanders in California. Future climate change may further complicate management of CTS if hybrid salamanders are better equipped to deal with rising temperatures.</description><subject>Alleles</subject><subject>Ambystoma californiense</subject><subject>Amphibians</subject><subject>Climate change</subject><subject>comparative physiology</subject><subject>conservation genetics</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Hybridization</subject><subject>Hybrids</subject><subject>Indigenous species</subject><subject>Introduced species</subject><subject>Native species</subject><subject>Regulatory mechanisms (biology)</subject><subject>Reptiles & amphibians</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Temperature tolerance</subject><subject>Thermal stress</subject><subject>Tolerances</subject><subject>Transcription</subject><subject>transcriptomics</subject><subject>Wildlife conservation</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kUFO3DAUhi3UqkxpF1wAWWJTFgE7ieN4ORpBiwTqBqTuIid5njFy7GBngNn1CFyol-lJ-oYBdn0b28-fP1v-CTnk7JRjnQ3QnXIhpdojM15UIstV-esDmTFV5RlndbFPPqd0xxgvciE-kf0Cq86VnJE_c-fAwd_fz2mEzhrbUXgaI6Rkg6fa93QJHmiE5drpadtbgRu3jNPW0ylqn5Yv-APQaQVx0I5OwQFudEAR8cGj3eNhJFabNto-0WC2MAXfa7-ECD1daGdNiN5qOlls0aSdHvABOP02H9pNmsKgafeGgU9w8oV8NNol-Po6HpDbi_ObxY_s6uf3y8X8KutywVRWFMCFMaLWLauM6VVblW0uJH6V7JkojQTRgyqNkHmpVQ1lbYThHNcSKsmLA3K8844x3K8hTc1dWEePVzZ5WSsmBJcKqZMd1cWQUgTTjNEOOm4azpptUA0G1bwEhezRq3HdDtC_k2_JIHC2Ax6tg83_Tc31-WKn_AeZg6O4</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Cooper, Robert D.</creator><creator>Shaffer, H. Bradley</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-0194-329X</orcidid><orcidid>https://orcid.org/0000-0002-5795-9242</orcidid></search><sort><creationdate>202102</creationdate><title>Allele‐specific expression and gene regulation help explain transgressive thermal tolerance in non‐native hybrids of the endangered California tiger salamander (Ambystoma californiense)</title><author>Cooper, Robert D. ; Shaffer, H. Bradley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2509-33e15ff58ab06ffd9b64b2573657d054f7e5de94f5724a98e48f5f11f577e6713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alleles</topic><topic>Ambystoma californiense</topic><topic>Amphibians</topic><topic>Climate change</topic><topic>comparative physiology</topic><topic>conservation genetics</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Hybridization</topic><topic>Hybrids</topic><topic>Indigenous species</topic><topic>Introduced species</topic><topic>Native species</topic><topic>Regulatory mechanisms (biology)</topic><topic>Reptiles & amphibians</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Temperature tolerance</topic><topic>Thermal stress</topic><topic>Tolerances</topic><topic>Transcription</topic><topic>transcriptomics</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, Robert D.</creatorcontrib><creatorcontrib>Shaffer, H. Bradley</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, Robert D.</au><au>Shaffer, H. Bradley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allele‐specific expression and gene regulation help explain transgressive thermal tolerance in non‐native hybrids of the endangered California tiger salamander (Ambystoma californiense)</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2021-02</date><risdate>2021</risdate><volume>30</volume><issue>4</issue><spage>987</spage><epage>1004</epage><pages>987-1004</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Hybridization between native and non‐native species is an ongoing global conservation threat. Hybrids that exhibit traits and tolerances that surpass parental values are of particular concern, given their potential to outperform native species. Effective management of hybrid populations requires an understanding of both physiological performance and the underlying mechanisms that drive transgressive hybrid traits. Here, we explore several aspects of the hybridization between the endangered California tiger salamander (Ambystoma californiense; CTS) and the introduced barred tiger salamander (Ambystoma mavortium; BTS). We assayed critical thermal maximum (CTMax) to compare the ability of CTS, BTS and F1 hybrids to tolerate acute thermal stress, and found that hybrids exhibit a wide range of CTMax values, with 33% (4/12) able to tolerate temperatures greater than either parent. We then quantified the genomic response, measured at the RNA transcript level, of each salamander, to explore the mechanisms underlying thermal tolerance strategies. We found that CTS and BTS have strikingly different values and tissue‐specific patterns of overall gene expression, with hybrids expressing intermediate values. F1 hybrids display abundant and variable degrees of allele‐specific expression (ASE), likely arising from extensive compensatory evolution in gene regulatory mechanisms between CTS and BTS. We found evidence that the proportion of genes with allelic imbalance in individual hybrids correlates with their CTMax, suggesting a link between ASE and expanded thermal tolerance that may contribute to the success of hybrid salamanders in California. Future climate change may further complicate management of CTS if hybrid salamanders are better equipped to deal with rising temperatures.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>33338297</pmid><doi>10.1111/mec.15779</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0003-0194-329X</orcidid><orcidid>https://orcid.org/0000-0002-5795-9242</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2021-02, Vol.30 (4), p.987-1004 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_proquest_journals_2489055179 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Alleles Ambystoma californiense Amphibians Climate change comparative physiology conservation genetics Gene expression Gene regulation Hybridization Hybrids Indigenous species Introduced species Native species Regulatory mechanisms (biology) Reptiles & amphibians Ribonucleic acid RNA Temperature tolerance Thermal stress Tolerances Transcription transcriptomics Wildlife conservation |
title | Allele‐specific expression and gene regulation help explain transgressive thermal tolerance in non‐native hybrids of the endangered California tiger salamander (Ambystoma californiense) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T18%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allele%E2%80%90specific%20expression%20and%20gene%20regulation%20help%20explain%20transgressive%20thermal%20tolerance%20in%20non%E2%80%90native%20hybrids%20of%20the%20endangered%20California%20tiger%20salamander%20(Ambystoma%20californiense)&rft.jtitle=Molecular%20ecology&rft.au=Cooper,%20Robert%20D.&rft.date=2021-02&rft.volume=30&rft.issue=4&rft.spage=987&rft.epage=1004&rft.pages=987-1004&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.15779&rft_dat=%3Cproquest_cross%3E2489055179%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2509-33e15ff58ab06ffd9b64b2573657d054f7e5de94f5724a98e48f5f11f577e6713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2489055179&rft_id=info:pmid/33338297&rfr_iscdi=true |