Loading…

Allele‐specific expression and gene regulation help explain transgressive thermal tolerance in non‐native hybrids of the endangered California tiger salamander (Ambystoma californiense)

Hybridization between native and non‐native species is an ongoing global conservation threat. Hybrids that exhibit traits and tolerances that surpass parental values are of particular concern, given their potential to outperform native species. Effective management of hybrid populations requires an...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology 2021-02, Vol.30 (4), p.987-1004
Main Authors: Cooper, Robert D., Shaffer, H. Bradley
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2509-33e15ff58ab06ffd9b64b2573657d054f7e5de94f5724a98e48f5f11f577e6713
cites cdi_FETCH-LOGICAL-c2509-33e15ff58ab06ffd9b64b2573657d054f7e5de94f5724a98e48f5f11f577e6713
container_end_page 1004
container_issue 4
container_start_page 987
container_title Molecular ecology
container_volume 30
creator Cooper, Robert D.
Shaffer, H. Bradley
description Hybridization between native and non‐native species is an ongoing global conservation threat. Hybrids that exhibit traits and tolerances that surpass parental values are of particular concern, given their potential to outperform native species. Effective management of hybrid populations requires an understanding of both physiological performance and the underlying mechanisms that drive transgressive hybrid traits. Here, we explore several aspects of the hybridization between the endangered California tiger salamander (Ambystoma californiense; CTS) and the introduced barred tiger salamander (Ambystoma mavortium; BTS). We assayed critical thermal maximum (CTMax) to compare the ability of CTS, BTS and F1 hybrids to tolerate acute thermal stress, and found that hybrids exhibit a wide range of CTMax values, with 33% (4/12) able to tolerate temperatures greater than either parent. We then quantified the genomic response, measured at the RNA transcript level, of each salamander, to explore the mechanisms underlying thermal tolerance strategies. We found that CTS and BTS have strikingly different values and tissue‐specific patterns of overall gene expression, with hybrids expressing intermediate values. F1 hybrids display abundant and variable degrees of allele‐specific expression (ASE), likely arising from extensive compensatory evolution in gene regulatory mechanisms between CTS and BTS. We found evidence that the proportion of genes with allelic imbalance in individual hybrids correlates with their CTMax, suggesting a link between ASE and expanded thermal tolerance that may contribute to the success of hybrid salamanders in California. Future climate change may further complicate management of CTS if hybrid salamanders are better equipped to deal with rising temperatures.
doi_str_mv 10.1111/mec.15779
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489055179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489055179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2509-33e15ff58ab06ffd9b64b2573657d054f7e5de94f5724a98e48f5f11f577e6713</originalsourceid><addsrcrecordid>eNp1kUFO3DAUhi3UqkxpF1wAWWJTFgE7ieN4ORpBiwTqBqTuIid5njFy7GBngNn1CFyol-lJ-oYBdn0b28-fP1v-CTnk7JRjnQ3QnXIhpdojM15UIstV-esDmTFV5RlndbFPPqd0xxgvciE-kf0Cq86VnJE_c-fAwd_fz2mEzhrbUXgaI6Rkg6fa93QJHmiE5drpadtbgRu3jNPW0ylqn5Yv-APQaQVx0I5OwQFudEAR8cGj3eNhJFabNto-0WC2MAXfa7-ECD1daGdNiN5qOlls0aSdHvABOP02H9pNmsKgafeGgU9w8oV8NNol-Po6HpDbi_ObxY_s6uf3y8X8KutywVRWFMCFMaLWLauM6VVblW0uJH6V7JkojQTRgyqNkHmpVQ1lbYThHNcSKsmLA3K8844x3K8hTc1dWEePVzZ5WSsmBJcKqZMd1cWQUgTTjNEOOm4azpptUA0G1bwEhezRq3HdDtC_k2_JIHC2Ax6tg83_Tc31-WKn_AeZg6O4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489055179</pqid></control><display><type>article</type><title>Allele‐specific expression and gene regulation help explain transgressive thermal tolerance in non‐native hybrids of the endangered California tiger salamander (Ambystoma californiense)</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Cooper, Robert D. ; Shaffer, H. Bradley</creator><creatorcontrib>Cooper, Robert D. ; Shaffer, H. Bradley</creatorcontrib><description>Hybridization between native and non‐native species is an ongoing global conservation threat. Hybrids that exhibit traits and tolerances that surpass parental values are of particular concern, given their potential to outperform native species. Effective management of hybrid populations requires an understanding of both physiological performance and the underlying mechanisms that drive transgressive hybrid traits. Here, we explore several aspects of the hybridization between the endangered California tiger salamander (Ambystoma californiense; CTS) and the introduced barred tiger salamander (Ambystoma mavortium; BTS). We assayed critical thermal maximum (CTMax) to compare the ability of CTS, BTS and F1 hybrids to tolerate acute thermal stress, and found that hybrids exhibit a wide range of CTMax values, with 33% (4/12) able to tolerate temperatures greater than either parent. We then quantified the genomic response, measured at the RNA transcript level, of each salamander, to explore the mechanisms underlying thermal tolerance strategies. We found that CTS and BTS have strikingly different values and tissue‐specific patterns of overall gene expression, with hybrids expressing intermediate values. F1 hybrids display abundant and variable degrees of allele‐specific expression (ASE), likely arising from extensive compensatory evolution in gene regulatory mechanisms between CTS and BTS. We found evidence that the proportion of genes with allelic imbalance in individual hybrids correlates with their CTMax, suggesting a link between ASE and expanded thermal tolerance that may contribute to the success of hybrid salamanders in California. Future climate change may further complicate management of CTS if hybrid salamanders are better equipped to deal with rising temperatures.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.15779</identifier><identifier>PMID: 33338297</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Alleles ; Ambystoma californiense ; Amphibians ; Climate change ; comparative physiology ; conservation genetics ; Gene expression ; Gene regulation ; Hybridization ; Hybrids ; Indigenous species ; Introduced species ; Native species ; Regulatory mechanisms (biology) ; Reptiles &amp; amphibians ; Ribonucleic acid ; RNA ; Temperature tolerance ; Thermal stress ; Tolerances ; Transcription ; transcriptomics ; Wildlife conservation</subject><ispartof>Molecular ecology, 2021-02, Vol.30 (4), p.987-1004</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2021 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2509-33e15ff58ab06ffd9b64b2573657d054f7e5de94f5724a98e48f5f11f577e6713</citedby><cites>FETCH-LOGICAL-c2509-33e15ff58ab06ffd9b64b2573657d054f7e5de94f5724a98e48f5f11f577e6713</cites><orcidid>0000-0003-0194-329X ; 0000-0002-5795-9242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33338297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, Robert D.</creatorcontrib><creatorcontrib>Shaffer, H. Bradley</creatorcontrib><title>Allele‐specific expression and gene regulation help explain transgressive thermal tolerance in non‐native hybrids of the endangered California tiger salamander (Ambystoma californiense)</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Hybridization between native and non‐native species is an ongoing global conservation threat. Hybrids that exhibit traits and tolerances that surpass parental values are of particular concern, given their potential to outperform native species. Effective management of hybrid populations requires an understanding of both physiological performance and the underlying mechanisms that drive transgressive hybrid traits. Here, we explore several aspects of the hybridization between the endangered California tiger salamander (Ambystoma californiense; CTS) and the introduced barred tiger salamander (Ambystoma mavortium; BTS). We assayed critical thermal maximum (CTMax) to compare the ability of CTS, BTS and F1 hybrids to tolerate acute thermal stress, and found that hybrids exhibit a wide range of CTMax values, with 33% (4/12) able to tolerate temperatures greater than either parent. We then quantified the genomic response, measured at the RNA transcript level, of each salamander, to explore the mechanisms underlying thermal tolerance strategies. We found that CTS and BTS have strikingly different values and tissue‐specific patterns of overall gene expression, with hybrids expressing intermediate values. F1 hybrids display abundant and variable degrees of allele‐specific expression (ASE), likely arising from extensive compensatory evolution in gene regulatory mechanisms between CTS and BTS. We found evidence that the proportion of genes with allelic imbalance in individual hybrids correlates with their CTMax, suggesting a link between ASE and expanded thermal tolerance that may contribute to the success of hybrid salamanders in California. Future climate change may further complicate management of CTS if hybrid salamanders are better equipped to deal with rising temperatures.</description><subject>Alleles</subject><subject>Ambystoma californiense</subject><subject>Amphibians</subject><subject>Climate change</subject><subject>comparative physiology</subject><subject>conservation genetics</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Hybridization</subject><subject>Hybrids</subject><subject>Indigenous species</subject><subject>Introduced species</subject><subject>Native species</subject><subject>Regulatory mechanisms (biology)</subject><subject>Reptiles &amp; amphibians</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Temperature tolerance</subject><subject>Thermal stress</subject><subject>Tolerances</subject><subject>Transcription</subject><subject>transcriptomics</subject><subject>Wildlife conservation</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kUFO3DAUhi3UqkxpF1wAWWJTFgE7ieN4ORpBiwTqBqTuIid5njFy7GBngNn1CFyol-lJ-oYBdn0b28-fP1v-CTnk7JRjnQ3QnXIhpdojM15UIstV-esDmTFV5RlndbFPPqd0xxgvciE-kf0Cq86VnJE_c-fAwd_fz2mEzhrbUXgaI6Rkg6fa93QJHmiE5drpadtbgRu3jNPW0ylqn5Yv-APQaQVx0I5OwQFudEAR8cGj3eNhJFabNto-0WC2MAXfa7-ECD1daGdNiN5qOlls0aSdHvABOP02H9pNmsKgafeGgU9w8oV8NNol-Po6HpDbi_ObxY_s6uf3y8X8KutywVRWFMCFMaLWLauM6VVblW0uJH6V7JkojQTRgyqNkHmpVQ1lbYThHNcSKsmLA3K8844x3K8hTc1dWEePVzZ5WSsmBJcKqZMd1cWQUgTTjNEOOm4azpptUA0G1bwEhezRq3HdDtC_k2_JIHC2Ax6tg83_Tc31-WKn_AeZg6O4</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Cooper, Robert D.</creator><creator>Shaffer, H. Bradley</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-0194-329X</orcidid><orcidid>https://orcid.org/0000-0002-5795-9242</orcidid></search><sort><creationdate>202102</creationdate><title>Allele‐specific expression and gene regulation help explain transgressive thermal tolerance in non‐native hybrids of the endangered California tiger salamander (Ambystoma californiense)</title><author>Cooper, Robert D. ; Shaffer, H. Bradley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2509-33e15ff58ab06ffd9b64b2573657d054f7e5de94f5724a98e48f5f11f577e6713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alleles</topic><topic>Ambystoma californiense</topic><topic>Amphibians</topic><topic>Climate change</topic><topic>comparative physiology</topic><topic>conservation genetics</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Hybridization</topic><topic>Hybrids</topic><topic>Indigenous species</topic><topic>Introduced species</topic><topic>Native species</topic><topic>Regulatory mechanisms (biology)</topic><topic>Reptiles &amp; amphibians</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Temperature tolerance</topic><topic>Thermal stress</topic><topic>Tolerances</topic><topic>Transcription</topic><topic>transcriptomics</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, Robert D.</creatorcontrib><creatorcontrib>Shaffer, H. Bradley</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, Robert D.</au><au>Shaffer, H. Bradley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allele‐specific expression and gene regulation help explain transgressive thermal tolerance in non‐native hybrids of the endangered California tiger salamander (Ambystoma californiense)</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2021-02</date><risdate>2021</risdate><volume>30</volume><issue>4</issue><spage>987</spage><epage>1004</epage><pages>987-1004</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Hybridization between native and non‐native species is an ongoing global conservation threat. Hybrids that exhibit traits and tolerances that surpass parental values are of particular concern, given their potential to outperform native species. Effective management of hybrid populations requires an understanding of both physiological performance and the underlying mechanisms that drive transgressive hybrid traits. Here, we explore several aspects of the hybridization between the endangered California tiger salamander (Ambystoma californiense; CTS) and the introduced barred tiger salamander (Ambystoma mavortium; BTS). We assayed critical thermal maximum (CTMax) to compare the ability of CTS, BTS and F1 hybrids to tolerate acute thermal stress, and found that hybrids exhibit a wide range of CTMax values, with 33% (4/12) able to tolerate temperatures greater than either parent. We then quantified the genomic response, measured at the RNA transcript level, of each salamander, to explore the mechanisms underlying thermal tolerance strategies. We found that CTS and BTS have strikingly different values and tissue‐specific patterns of overall gene expression, with hybrids expressing intermediate values. F1 hybrids display abundant and variable degrees of allele‐specific expression (ASE), likely arising from extensive compensatory evolution in gene regulatory mechanisms between CTS and BTS. We found evidence that the proportion of genes with allelic imbalance in individual hybrids correlates with their CTMax, suggesting a link between ASE and expanded thermal tolerance that may contribute to the success of hybrid salamanders in California. Future climate change may further complicate management of CTS if hybrid salamanders are better equipped to deal with rising temperatures.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>33338297</pmid><doi>10.1111/mec.15779</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0003-0194-329X</orcidid><orcidid>https://orcid.org/0000-0002-5795-9242</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2021-02, Vol.30 (4), p.987-1004
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_journals_2489055179
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Alleles
Ambystoma californiense
Amphibians
Climate change
comparative physiology
conservation genetics
Gene expression
Gene regulation
Hybridization
Hybrids
Indigenous species
Introduced species
Native species
Regulatory mechanisms (biology)
Reptiles & amphibians
Ribonucleic acid
RNA
Temperature tolerance
Thermal stress
Tolerances
Transcription
transcriptomics
Wildlife conservation
title Allele‐specific expression and gene regulation help explain transgressive thermal tolerance in non‐native hybrids of the endangered California tiger salamander (Ambystoma californiense)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T18%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allele%E2%80%90specific%20expression%20and%20gene%20regulation%20help%20explain%20transgressive%20thermal%20tolerance%20in%20non%E2%80%90native%20hybrids%20of%20the%20endangered%20California%20tiger%20salamander%20(Ambystoma%20californiense)&rft.jtitle=Molecular%20ecology&rft.au=Cooper,%20Robert%20D.&rft.date=2021-02&rft.volume=30&rft.issue=4&rft.spage=987&rft.epage=1004&rft.pages=987-1004&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.15779&rft_dat=%3Cproquest_cross%3E2489055179%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2509-33e15ff58ab06ffd9b64b2573657d054f7e5de94f5724a98e48f5f11f577e6713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2489055179&rft_id=info:pmid/33338297&rfr_iscdi=true