Loading…

Labeling Modes of Operation and Extracting Features for Fault Detection with Cloud-Based Thermostat Data

This paper presents a method for transforming raw cloud-based thermostat data for cycling systems into a set of operating modes that is useful for large scale data analysis. Thermostat data typically includes the setpoint temperatures, the actual indoor temperature and the operating mode. These raw...

Full description

Saved in:
Bibliographic Details
Main Authors: Rogers, Austin, Guo, Fangzhou, Ma, Rasmussen, Bryan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 79
container_issue 2
container_start_page 71
container_title
container_volume 126
creator Rogers, Austin
Guo, Fangzhou
Ma
Rasmussen, Bryan
description This paper presents a method for transforming raw cloud-based thermostat data for cycling systems into a set of operating modes that is useful for large scale data analysis. Thermostat data typically includes the setpoint temperatures, the actual indoor temperature and the operating mode. These raw thermostat operating modes include "cooling on' "heating on', and "system off. The transformed operating modes include regulating modes, tracking modes, and free response modes. These new modes, which can be generated during data preprocessing, are used to more clearly show key system performance metrics and identify change points in the time series thermostat data. This paper includes the filtering logic used to label the operating modes and examples of insightful behavior that has been captured using this preprocessing method.
format conference_proceeding
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2489352914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650330211</galeid><sourcerecordid>A650330211</sourcerecordid><originalsourceid>FETCH-LOGICAL-g222t-395c4203a072ec2abf57d6818be79c66ba4c363fd77660d7b67c14957dfed1bf3</originalsourceid><addsrcrecordid>eNotz01PAjEQBuA9aCKi_6GJ5zX9LntEBDXBcMEzmW2nsGTZYtuN_nyrmDlM5s2TmcxVNaGUsporqm6q25SOZZJK6kl1WEOLfTfsyXtwmEjwZHPGCLkLA4HBkeV3jmDzr1gh5DEW5EMkKxj7TJ4xo_2zX10-kEUfRlc_QUJHtgeMp5AyFAUZ7qprD33C-_8-rT5Wy-3itV5vXt4W83W955znWjTKSk4FUMPRcmi9Mk7P2KxF01itW5BWaOGdMVpTZ1ptLJNNQR4da72YVg-XvecYPkdMeXcMYxzKyR2Xs0Yo3jBZ1ONF7aHHXTf48PtlKYenzoYBfVfyuVZUCMoZEz_tOGJu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2489352914</pqid></control><display><type>conference_proceeding</type><title>Labeling Modes of Operation and Extracting Features for Fault Detection with Cloud-Based Thermostat Data</title><source>ASHRAE Publications</source><creator>Rogers, Austin ; Guo, Fangzhou ; Ma ; Rasmussen, Bryan</creator><creatorcontrib>Rogers, Austin ; Guo, Fangzhou ; Ma ; Rasmussen, Bryan</creatorcontrib><description>This paper presents a method for transforming raw cloud-based thermostat data for cycling systems into a set of operating modes that is useful for large scale data analysis. Thermostat data typically includes the setpoint temperatures, the actual indoor temperature and the operating mode. These raw thermostat operating modes include "cooling on' "heating on', and "system off. The transformed operating modes include regulating modes, tracking modes, and free response modes. These new modes, which can be generated during data preprocessing, are used to more clearly show key system performance metrics and identify change points in the time series thermostat data. This paper includes the filtering logic used to label the operating modes and examples of insightful behavior that has been captured using this preprocessing method.</description><identifier>ISSN: 0001-2505</identifier><language>eng</language><publisher>Atlanta: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. (ASHRAE)</publisher><subject>Air conditioning ; Algorithms ; Analysis ; Control theory ; Data analysis ; Energy consumption ; Fault detection ; Feature extraction ; Information management ; Methods ; Performance measurement ; Preprocessing</subject><ispartof>ASHRAE transactions, 2020, Vol.126 (2), p.71-79</ispartof><rights>COPYRIGHT 2020 American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. (ASHRAE)</rights><rights>Copyright American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782</link.rule.ids></links><search><creatorcontrib>Rogers, Austin</creatorcontrib><creatorcontrib>Guo, Fangzhou</creatorcontrib><creatorcontrib>Ma</creatorcontrib><creatorcontrib>Rasmussen, Bryan</creatorcontrib><title>Labeling Modes of Operation and Extracting Features for Fault Detection with Cloud-Based Thermostat Data</title><title>ASHRAE transactions</title><description>This paper presents a method for transforming raw cloud-based thermostat data for cycling systems into a set of operating modes that is useful for large scale data analysis. Thermostat data typically includes the setpoint temperatures, the actual indoor temperature and the operating mode. These raw thermostat operating modes include "cooling on' "heating on', and "system off. The transformed operating modes include regulating modes, tracking modes, and free response modes. These new modes, which can be generated during data preprocessing, are used to more clearly show key system performance metrics and identify change points in the time series thermostat data. This paper includes the filtering logic used to label the operating modes and examples of insightful behavior that has been captured using this preprocessing method.</description><subject>Air conditioning</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Control theory</subject><subject>Data analysis</subject><subject>Energy consumption</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>Information management</subject><subject>Methods</subject><subject>Performance measurement</subject><subject>Preprocessing</subject><issn>0001-2505</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotz01PAjEQBuA9aCKi_6GJ5zX9LntEBDXBcMEzmW2nsGTZYtuN_nyrmDlM5s2TmcxVNaGUsporqm6q25SOZZJK6kl1WEOLfTfsyXtwmEjwZHPGCLkLA4HBkeV3jmDzr1gh5DEW5EMkKxj7TJ4xo_2zX10-kEUfRlc_QUJHtgeMp5AyFAUZ7qprD33C-_8-rT5Wy-3itV5vXt4W83W955znWjTKSk4FUMPRcmi9Mk7P2KxF01itW5BWaOGdMVpTZ1ptLJNNQR4da72YVg-XvecYPkdMeXcMYxzKyR2Xs0Yo3jBZ1ONF7aHHXTf48PtlKYenzoYBfVfyuVZUCMoZEz_tOGJu</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Rogers, Austin</creator><creator>Guo, Fangzhou</creator><creator>Ma</creator><creator>Rasmussen, Bryan</creator><general>American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. (ASHRAE)</general><general>American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc</general><scope>3V.</scope><scope>7RQ</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20200101</creationdate><title>Labeling Modes of Operation and Extracting Features for Fault Detection with Cloud-Based Thermostat Data</title><author>Rogers, Austin ; Guo, Fangzhou ; Ma ; Rasmussen, Bryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g222t-395c4203a072ec2abf57d6818be79c66ba4c363fd77660d7b67c14957dfed1bf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air conditioning</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Control theory</topic><topic>Data analysis</topic><topic>Energy consumption</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>Information management</topic><topic>Methods</topic><topic>Performance measurement</topic><topic>Preprocessing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rogers, Austin</creatorcontrib><creatorcontrib>Guo, Fangzhou</creatorcontrib><creatorcontrib>Ma</creatorcontrib><creatorcontrib>Rasmussen, Bryan</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rogers, Austin</au><au>Guo, Fangzhou</au><au>Ma</au><au>Rasmussen, Bryan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Labeling Modes of Operation and Extracting Features for Fault Detection with Cloud-Based Thermostat Data</atitle><btitle>ASHRAE transactions</btitle><date>2020-01-01</date><risdate>2020</risdate><volume>126</volume><issue>2</issue><spage>71</spage><epage>79</epage><pages>71-79</pages><issn>0001-2505</issn><abstract>This paper presents a method for transforming raw cloud-based thermostat data for cycling systems into a set of operating modes that is useful for large scale data analysis. Thermostat data typically includes the setpoint temperatures, the actual indoor temperature and the operating mode. These raw thermostat operating modes include "cooling on' "heating on', and "system off. The transformed operating modes include regulating modes, tracking modes, and free response modes. These new modes, which can be generated during data preprocessing, are used to more clearly show key system performance metrics and identify change points in the time series thermostat data. This paper includes the filtering logic used to label the operating modes and examples of insightful behavior that has been captured using this preprocessing method.</abstract><cop>Atlanta</cop><pub>American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. (ASHRAE)</pub><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-2505
ispartof ASHRAE transactions, 2020, Vol.126 (2), p.71-79
issn 0001-2505
language eng
recordid cdi_proquest_journals_2489352914
source ASHRAE Publications
subjects Air conditioning
Algorithms
Analysis
Control theory
Data analysis
Energy consumption
Fault detection
Feature extraction
Information management
Methods
Performance measurement
Preprocessing
title Labeling Modes of Operation and Extracting Features for Fault Detection with Cloud-Based Thermostat Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Labeling%20Modes%20of%20Operation%20and%20Extracting%20Features%20for%20Fault%20Detection%20with%20Cloud-Based%20Thermostat%20Data&rft.btitle=ASHRAE%20transactions&rft.au=Rogers,%20Austin&rft.date=2020-01-01&rft.volume=126&rft.issue=2&rft.spage=71&rft.epage=79&rft.pages=71-79&rft.issn=0001-2505&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA650330211%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g222t-395c4203a072ec2abf57d6818be79c66ba4c363fd77660d7b67c14957dfed1bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2489352914&rft_id=info:pmid/&rft_galeid=A650330211&rfr_iscdi=true