Loading…
Vibration induced active rheology control for 3D concrete printing
3D concrete printing, an emerging automation technology for construction, requires the concrete to be flowable during pumping and extrusion but firm immediately after layer deposition. This study investigated an active rheology control using vibration to achieve these opposing requirements. The effe...
Saved in:
Published in: | Cement and concrete research 2021-02, Vol.140, p.106293, Article 106293 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 3D concrete printing, an emerging automation technology for construction, requires the concrete to be flowable during pumping and extrusion but firm immediately after layer deposition. This study investigated an active rheology control using vibration to achieve these opposing requirements. The effects of vibration frequency and acceleration on rheological parameters of concrete were studied with different levels of nanoparticles in the mix. It was found that extrusion pressure and yield stress show less sensitivity to the peak velocity of the vibration up to a certain level and then they both decrease beyond this level. Also, certain level of nanoparticles inclusion found to double the reduction in extrusion pressure and yield stress. Buildability studies using 3D printers were conducted to demonstrate the active rheology control using vibration. The mechanical properties of the printed structures were also found to have improved when vibration rheology control was used. |
---|---|
ISSN: | 0008-8846 1873-3948 |
DOI: | 10.1016/j.cemconres.2020.106293 |