Loading…

Direct visualization of out-of-equilibrium structural transformations in atomically thin chalcogenides

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of sustained research interest due to their extraordinary electronic and optical properties. They also exhibit a wide range of structural phases because of the different orientations that the atoms can have within a...

Full description

Saved in:
Bibliographic Details
Published in:NPJ 2D materials and applications 2020-06, Vol.4 (1), Article 16
Main Authors: Kumar, Pawan, Horwath, James P., Foucher, Alexandre C., Price, Christopher C., Acero, Natalia, Shenoy, Vivek B., Stach, Eric A., Jariwala, Deep
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of sustained research interest due to their extraordinary electronic and optical properties. They also exhibit a wide range of structural phases because of the different orientations that the atoms can have within a single layer, or due to the ways that different layers can stack. Here we report a unique study involving direct visualization of structural transformations in atomically thin layers under highly non-equilibrium thermodynamic conditions. We probe these transformations at the atomic scale using real-time, aberration-corrected scanning transmission electron microscopy and observe strong dependence of the resulting structures and phases on both heating rate and temperature. A fast heating rate (25 °C/sec) yields highly ordered crystalline hexagonal islands of sizes of less than 20 nm which are composed of a mixture of 2H and 3R phases. However, a slow heating rate (25 °C/min) yields nanocrystalline and sub-stoichiometric amorphous regions. These differences are explained by different rates of sulfur evaporation and redeposition. The use of non-equilibrium heating rates to achieve highly crystalline and quantum-confined features from 2D atomic layers present a new route to synthesize atomically thin, laterally confined nanostructures and opens new avenues for investigating fundamental electronic phenomena in confined dimensions.
ISSN:2397-7132
2397-7132
DOI:10.1038/s41699-020-0150-2