Loading…
Unraveling the Scaling Characteristics of Flux Pinning Forces in Bi1.6Pb0.4Sr2Ca2−xNaxCu3O10+δ Superconductors
The temperature and magnetic field dependence of the critical current density ( J c ) and pinning force density ( F p ) in Bi 1.6 Pb 0.4 Sr 2 Ca 2− x Na x Cu 3 O 10+ δ ( x = 0, 0.02, 0.04, 0.06, 0.08, and 0.10) high-temperature superconductors is reported. Polycrystalline samples were prepared by a...
Saved in:
Published in: | Journal of electronic materials 2021-03, Vol.50 (3), p.1444-1451 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-1bef2622aa142972331a8d7e606da102127856ae26bab47d86db4e69b3e73af53 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-1bef2622aa142972331a8d7e606da102127856ae26bab47d86db4e69b3e73af53 |
container_end_page | 1451 |
container_issue | 3 |
container_start_page | 1444 |
container_title | Journal of electronic materials |
container_volume | 50 |
creator | Pham, An T. Tran, Dzung T. Tran, Duong B. Tai, Luu T. Man, Nguyen K. Hong, Nguyen T. M. Le, Tien M. Pham, Duong Kang, Won-Nam Tran, Duc H. |
description | The temperature and magnetic field dependence of the critical current density (
J
c
) and pinning force density (
F
p
) in Bi
1.6
Pb
0.4
Sr
2
Ca
2−
x
Na
x
Cu
3
O
10+
δ
(
x
= 0, 0.02, 0.04, 0.06, 0.08, and 0.10) high-temperature superconductors is reported. Polycrystalline samples were prepared by a conventional solid-state reaction route. The influence of Na substitution on
J
c
and
F
p
at temperatures ranging between 65 K and 25 K was investigated. The collective pinning model is successfully applied to describe the magnetic field dependence of
J
c
for all the samples investigated. Magnetic field–temperature phase diagrams were also constructed to illustrate the effects of Na substitution in different field regions. The power-law dependence of the maximum
F
p
(
F
p,max
) versus the irreversibility field (
B
irr
) at different temperatures shows nearly unchanged exponent values, suggesting temperature independence of the flux pinning mechanism in the Na-substituted samples. The dominant pinning mechanism is confirmed to be δ
l
pinning, induced by fluctuations in the mean free path of charge carriers. |
doi_str_mv | 10.1007/s11664-020-08676-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490403040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490403040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1bef2622aa142972331a8d7e606da102127856ae26bab47d86db4e69b3e73af53</originalsourceid><addsrcrecordid>eNp9kN1KwzAUx4MoOKcv4FXAS8nMSdq0vdTiVBhuMAfehTRNt46Zbkkr8w289ll8Dh_CJ7FbBe-8OJwD5_8BP4TOgQ6A0ujKAwgREMooobGIBEkOUA_CgBOIxfMh6lEugISMh8foxPslpRBCDD20mVmnXs2qtHNcLwyearW_04VyStfGlb4utcdVgYerZosnpbW7_7By2nhcWnxTwkBMMjoIpo6lin2_f2wf1TZt-Bjo5dcnnjZr43Rl80bXlfOn6KhQK2_OfncfzYa3T-k9GY3vHtLrEdEckppAZgomGFMKApZEjHNQcR4ZQUWugDJgURwKZZjIVBZEeSzyLDAiybiJuCpC3kcXXe7aVZvG-Fouq8bZtlKyIKEB5bvpI9aptKu8d6aQa1e-KPcmgcodWtmhlS1auUcrk9bEO5NvxXZu3F_0P64fbqV8ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490403040</pqid></control><display><type>article</type><title>Unraveling the Scaling Characteristics of Flux Pinning Forces in Bi1.6Pb0.4Sr2Ca2−xNaxCu3O10+δ Superconductors</title><source>Springer Link</source><creator>Pham, An T. ; Tran, Dzung T. ; Tran, Duong B. ; Tai, Luu T. ; Man, Nguyen K. ; Hong, Nguyen T. M. ; Le, Tien M. ; Pham, Duong ; Kang, Won-Nam ; Tran, Duc H.</creator><creatorcontrib>Pham, An T. ; Tran, Dzung T. ; Tran, Duong B. ; Tai, Luu T. ; Man, Nguyen K. ; Hong, Nguyen T. M. ; Le, Tien M. ; Pham, Duong ; Kang, Won-Nam ; Tran, Duc H.</creatorcontrib><description>The temperature and magnetic field dependence of the critical current density (
J
c
) and pinning force density (
F
p
) in Bi
1.6
Pb
0.4
Sr
2
Ca
2−
x
Na
x
Cu
3
O
10+
δ
(
x
= 0, 0.02, 0.04, 0.06, 0.08, and 0.10) high-temperature superconductors is reported. Polycrystalline samples were prepared by a conventional solid-state reaction route. The influence of Na substitution on
J
c
and
F
p
at temperatures ranging between 65 K and 25 K was investigated. The collective pinning model is successfully applied to describe the magnetic field dependence of
J
c
for all the samples investigated. Magnetic field–temperature phase diagrams were also constructed to illustrate the effects of Na substitution in different field regions. The power-law dependence of the maximum
F
p
(
F
p,max
) versus the irreversibility field (
B
irr
) at different temperatures shows nearly unchanged exponent values, suggesting temperature independence of the flux pinning mechanism in the Na-substituted samples. The dominant pinning mechanism is confirmed to be δ
l
pinning, induced by fluctuations in the mean free path of charge carriers.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08676-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Critical current density ; Current carriers ; Electronics and Microelectronics ; Flux pinning ; High temperature superconductors ; Instrumentation ; Magnetic fields ; Magnetism ; Materials Science ; Optical and Electronic Materials ; Original Research Article ; Phase diagrams ; Solid State Physics ; Substitution reactions ; Temperature ; Temperature dependence</subject><ispartof>Journal of electronic materials, 2021-03, Vol.50 (3), p.1444-1451</ispartof><rights>Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1bef2622aa142972331a8d7e606da102127856ae26bab47d86db4e69b3e73af53</citedby><cites>FETCH-LOGICAL-c319t-1bef2622aa142972331a8d7e606da102127856ae26bab47d86db4e69b3e73af53</cites><orcidid>0000-0002-2820-5361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Pham, An T.</creatorcontrib><creatorcontrib>Tran, Dzung T.</creatorcontrib><creatorcontrib>Tran, Duong B.</creatorcontrib><creatorcontrib>Tai, Luu T.</creatorcontrib><creatorcontrib>Man, Nguyen K.</creatorcontrib><creatorcontrib>Hong, Nguyen T. M.</creatorcontrib><creatorcontrib>Le, Tien M.</creatorcontrib><creatorcontrib>Pham, Duong</creatorcontrib><creatorcontrib>Kang, Won-Nam</creatorcontrib><creatorcontrib>Tran, Duc H.</creatorcontrib><title>Unraveling the Scaling Characteristics of Flux Pinning Forces in Bi1.6Pb0.4Sr2Ca2−xNaxCu3O10+δ Superconductors</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The temperature and magnetic field dependence of the critical current density (
J
c
) and pinning force density (
F
p
) in Bi
1.6
Pb
0.4
Sr
2
Ca
2−
x
Na
x
Cu
3
O
10+
δ
(
x
= 0, 0.02, 0.04, 0.06, 0.08, and 0.10) high-temperature superconductors is reported. Polycrystalline samples were prepared by a conventional solid-state reaction route. The influence of Na substitution on
J
c
and
F
p
at temperatures ranging between 65 K and 25 K was investigated. The collective pinning model is successfully applied to describe the magnetic field dependence of
J
c
for all the samples investigated. Magnetic field–temperature phase diagrams were also constructed to illustrate the effects of Na substitution in different field regions. The power-law dependence of the maximum
F
p
(
F
p,max
) versus the irreversibility field (
B
irr
) at different temperatures shows nearly unchanged exponent values, suggesting temperature independence of the flux pinning mechanism in the Na-substituted samples. The dominant pinning mechanism is confirmed to be δ
l
pinning, induced by fluctuations in the mean free path of charge carriers.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Critical current density</subject><subject>Current carriers</subject><subject>Electronics and Microelectronics</subject><subject>Flux pinning</subject><subject>High temperature superconductors</subject><subject>Instrumentation</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Phase diagrams</subject><subject>Solid State Physics</subject><subject>Substitution reactions</subject><subject>Temperature</subject><subject>Temperature dependence</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KwzAUx4MoOKcv4FXAS8nMSdq0vdTiVBhuMAfehTRNt46Zbkkr8w289ll8Dh_CJ7FbBe-8OJwD5_8BP4TOgQ6A0ujKAwgREMooobGIBEkOUA_CgBOIxfMh6lEugISMh8foxPslpRBCDD20mVmnXs2qtHNcLwyearW_04VyStfGlb4utcdVgYerZosnpbW7_7By2nhcWnxTwkBMMjoIpo6lin2_f2wf1TZt-Bjo5dcnnjZr43Rl80bXlfOn6KhQK2_OfncfzYa3T-k9GY3vHtLrEdEckppAZgomGFMKApZEjHNQcR4ZQUWugDJgURwKZZjIVBZEeSzyLDAiybiJuCpC3kcXXe7aVZvG-Fouq8bZtlKyIKEB5bvpI9aptKu8d6aQa1e-KPcmgcodWtmhlS1auUcrk9bEO5NvxXZu3F_0P64fbqV8ew</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Pham, An T.</creator><creator>Tran, Dzung T.</creator><creator>Tran, Duong B.</creator><creator>Tai, Luu T.</creator><creator>Man, Nguyen K.</creator><creator>Hong, Nguyen T. M.</creator><creator>Le, Tien M.</creator><creator>Pham, Duong</creator><creator>Kang, Won-Nam</creator><creator>Tran, Duc H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-2820-5361</orcidid></search><sort><creationdate>20210301</creationdate><title>Unraveling the Scaling Characteristics of Flux Pinning Forces in Bi1.6Pb0.4Sr2Ca2−xNaxCu3O10+δ Superconductors</title><author>Pham, An T. ; Tran, Dzung T. ; Tran, Duong B. ; Tai, Luu T. ; Man, Nguyen K. ; Hong, Nguyen T. M. ; Le, Tien M. ; Pham, Duong ; Kang, Won-Nam ; Tran, Duc H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1bef2622aa142972331a8d7e606da102127856ae26bab47d86db4e69b3e73af53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Critical current density</topic><topic>Current carriers</topic><topic>Electronics and Microelectronics</topic><topic>Flux pinning</topic><topic>High temperature superconductors</topic><topic>Instrumentation</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Phase diagrams</topic><topic>Solid State Physics</topic><topic>Substitution reactions</topic><topic>Temperature</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, An T.</creatorcontrib><creatorcontrib>Tran, Dzung T.</creatorcontrib><creatorcontrib>Tran, Duong B.</creatorcontrib><creatorcontrib>Tai, Luu T.</creatorcontrib><creatorcontrib>Man, Nguyen K.</creatorcontrib><creatorcontrib>Hong, Nguyen T. M.</creatorcontrib><creatorcontrib>Le, Tien M.</creatorcontrib><creatorcontrib>Pham, Duong</creatorcontrib><creatorcontrib>Kang, Won-Nam</creatorcontrib><creatorcontrib>Tran, Duc H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, An T.</au><au>Tran, Dzung T.</au><au>Tran, Duong B.</au><au>Tai, Luu T.</au><au>Man, Nguyen K.</au><au>Hong, Nguyen T. M.</au><au>Le, Tien M.</au><au>Pham, Duong</au><au>Kang, Won-Nam</au><au>Tran, Duc H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Scaling Characteristics of Flux Pinning Forces in Bi1.6Pb0.4Sr2Ca2−xNaxCu3O10+δ Superconductors</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>50</volume><issue>3</issue><spage>1444</spage><epage>1451</epage><pages>1444-1451</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The temperature and magnetic field dependence of the critical current density (
J
c
) and pinning force density (
F
p
) in Bi
1.6
Pb
0.4
Sr
2
Ca
2−
x
Na
x
Cu
3
O
10+
δ
(
x
= 0, 0.02, 0.04, 0.06, 0.08, and 0.10) high-temperature superconductors is reported. Polycrystalline samples were prepared by a conventional solid-state reaction route. The influence of Na substitution on
J
c
and
F
p
at temperatures ranging between 65 K and 25 K was investigated. The collective pinning model is successfully applied to describe the magnetic field dependence of
J
c
for all the samples investigated. Magnetic field–temperature phase diagrams were also constructed to illustrate the effects of Na substitution in different field regions. The power-law dependence of the maximum
F
p
(
F
p,max
) versus the irreversibility field (
B
irr
) at different temperatures shows nearly unchanged exponent values, suggesting temperature independence of the flux pinning mechanism in the Na-substituted samples. The dominant pinning mechanism is confirmed to be δ
l
pinning, induced by fluctuations in the mean free path of charge carriers.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08676-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2820-5361</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2021-03, Vol.50 (3), p.1444-1451 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2490403040 |
source | Springer Link |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Critical current density Current carriers Electronics and Microelectronics Flux pinning High temperature superconductors Instrumentation Magnetic fields Magnetism Materials Science Optical and Electronic Materials Original Research Article Phase diagrams Solid State Physics Substitution reactions Temperature Temperature dependence |
title | Unraveling the Scaling Characteristics of Flux Pinning Forces in Bi1.6Pb0.4Sr2Ca2−xNaxCu3O10+δ Superconductors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Scaling%20Characteristics%20of%20Flux%20Pinning%20Forces%20in%20Bi1.6Pb0.4Sr2Ca2%E2%88%92xNaxCu3O10+%CE%B4%20Superconductors&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Pham,%20An%20T.&rft.date=2021-03-01&rft.volume=50&rft.issue=3&rft.spage=1444&rft.epage=1451&rft.pages=1444-1451&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08676-9&rft_dat=%3Cproquest_cross%3E2490403040%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-1bef2622aa142972331a8d7e606da102127856ae26bab47d86db4e69b3e73af53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490403040&rft_id=info:pmid/&rfr_iscdi=true |