Loading…
Air-to-Air Visual Detection of Micro-UAVs: An Experimental Evaluation of Deep Learning
This letter studies the problem of air-to-air visual detection of micro unmanned aerial vehicles (UAVs) by monocular cameras. This problem is important for many applications such as vision-based swarming of UAVs, malicious UAV detection, and see-and-avoid systems for UAVs. Although deep learning met...
Saved in:
Published in: | IEEE robotics and automation letters 2021-04, Vol.6 (2), p.1020-1027 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-a4cd8474e75ba27d042e5f5026f794a9e556ba769d7352515057fae0e57fcb003 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-a4cd8474e75ba27d042e5f5026f794a9e556ba769d7352515057fae0e57fcb003 |
container_end_page | 1027 |
container_issue | 2 |
container_start_page | 1020 |
container_title | IEEE robotics and automation letters |
container_volume | 6 |
creator | Zheng, Ye Chen, Zhang Lv, Dailin Li, Zhixing Lan, Zhenzhong Zhao, Shiyu |
description | This letter studies the problem of air-to-air visual detection of micro unmanned aerial vehicles (UAVs) by monocular cameras. This problem is important for many applications such as vision-based swarming of UAVs, malicious UAV detection, and see-and-avoid systems for UAVs. Although deep learning methods have exhibited superior performance in many object detection tasks, their potential for UAV detection has not been well explored. As the first main contribution of this letter, we present a new dataset, named Det-Fly, which consists of more than 13 000 images of a flying target UAV acquired by another flying UAV. Compared to the existing datasets, the proposed one is more comprehensive in the sense that it covers a wide range of practical scenarios with different background scenes, viewing angles, relative distance, flying altitude, and lightning conditions. The second main contribution of this letter is to present an experimental evaluation of eight representative deep-learning algorithms based on the proposed dataset. To the best of our knowledge, this is the first comprehensive experimental evaluation of deep learning algorithms for the task of visual UAV detection so far. The evaluation results highlight some key challenges in the problem of air-to-air UAV detection and suggest potential ways to develop new algorithms in the future. The dataset is available at https://github.com/Jake-WU/Det-Fly . |
doi_str_mv | 10.1109/LRA.2021.3056059 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490800667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9343737</ieee_id><sourcerecordid>2490800667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a4cd8474e75ba27d042e5f5026f794a9e556ba769d7352515057fae0e57fcb003</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGrvgpeA562TZJM03pZ2_YAVQWyvId3Oypa6uya7ov-9Ka0ic3hz-L0Z3iPkksGUMTA3xUs25cDZVIBUIM0JGXGhdSK0Uqf_9nMyCWELAExyLYwckVVW-6Rvkyh0VYfB7egCeyz7um1oW9GnuvRtssxW4ZZmDc2_OvT1OzZ9BPNPtxvcL7lA7GiBzjd183ZBziq3Czg56pgs7_LX-UNSPN8_zrMiKblhfeLScjNLdYparh3XG0g5ykoCV5U2qTMopVo7rcxGC8klkyB15RAwSrkGEGNyfbjb-fZjwNDbbTv4Jr60PDUwA1BKRwoOVMwSgsfKdjGE89-Wgd0XaGOBdl-gPRYYLVcHS42If7gRqdBxfgBbrmnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490800667</pqid></control><display><type>article</type><title>Air-to-Air Visual Detection of Micro-UAVs: An Experimental Evaluation of Deep Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zheng, Ye ; Chen, Zhang ; Lv, Dailin ; Li, Zhixing ; Lan, Zhenzhong ; Zhao, Shiyu</creator><creatorcontrib>Zheng, Ye ; Chen, Zhang ; Lv, Dailin ; Li, Zhixing ; Lan, Zhenzhong ; Zhao, Shiyu</creatorcontrib><description>This letter studies the problem of air-to-air visual detection of micro unmanned aerial vehicles (UAVs) by monocular cameras. This problem is important for many applications such as vision-based swarming of UAVs, malicious UAV detection, and see-and-avoid systems for UAVs. Although deep learning methods have exhibited superior performance in many object detection tasks, their potential for UAV detection has not been well explored. As the first main contribution of this letter, we present a new dataset, named Det-Fly, which consists of more than 13 000 images of a flying target UAV acquired by another flying UAV. Compared to the existing datasets, the proposed one is more comprehensive in the sense that it covers a wide range of practical scenarios with different background scenes, viewing angles, relative distance, flying altitude, and lightning conditions. The second main contribution of this letter is to present an experimental evaluation of eight representative deep-learning algorithms based on the proposed dataset. To the best of our knowledge, this is the first comprehensive experimental evaluation of deep learning algorithms for the task of visual UAV detection so far. The evaluation results highlight some key challenges in the problem of air-to-air UAV detection and suggest potential ways to develop new algorithms in the future. The dataset is available at https://github.com/Jake-WU/Det-Fly .</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3056059</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cameras ; Datasets ; Deep learning ; Feature extraction ; Image acquisition ; Machine learning ; Object detection ; Object recognition ; Swarming ; Task analysis ; UAV detection ; Unmanned aerial vehicles ; visual detection ; Visual tasks ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.1020-1027</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a4cd8474e75ba27d042e5f5026f794a9e556ba769d7352515057fae0e57fcb003</citedby><cites>FETCH-LOGICAL-c291t-a4cd8474e75ba27d042e5f5026f794a9e556ba769d7352515057fae0e57fcb003</cites><orcidid>0000-0001-9127-5234 ; 0000-0003-3098-8059 ; 0000-0003-1484-8646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9343737$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Zheng, Ye</creatorcontrib><creatorcontrib>Chen, Zhang</creatorcontrib><creatorcontrib>Lv, Dailin</creatorcontrib><creatorcontrib>Li, Zhixing</creatorcontrib><creatorcontrib>Lan, Zhenzhong</creatorcontrib><creatorcontrib>Zhao, Shiyu</creatorcontrib><title>Air-to-Air Visual Detection of Micro-UAVs: An Experimental Evaluation of Deep Learning</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This letter studies the problem of air-to-air visual detection of micro unmanned aerial vehicles (UAVs) by monocular cameras. This problem is important for many applications such as vision-based swarming of UAVs, malicious UAV detection, and see-and-avoid systems for UAVs. Although deep learning methods have exhibited superior performance in many object detection tasks, their potential for UAV detection has not been well explored. As the first main contribution of this letter, we present a new dataset, named Det-Fly, which consists of more than 13 000 images of a flying target UAV acquired by another flying UAV. Compared to the existing datasets, the proposed one is more comprehensive in the sense that it covers a wide range of practical scenarios with different background scenes, viewing angles, relative distance, flying altitude, and lightning conditions. The second main contribution of this letter is to present an experimental evaluation of eight representative deep-learning algorithms based on the proposed dataset. To the best of our knowledge, this is the first comprehensive experimental evaluation of deep learning algorithms for the task of visual UAV detection so far. The evaluation results highlight some key challenges in the problem of air-to-air UAV detection and suggest potential ways to develop new algorithms in the future. The dataset is available at https://github.com/Jake-WU/Det-Fly .</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Image acquisition</subject><subject>Machine learning</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Swarming</subject><subject>Task analysis</subject><subject>UAV detection</subject><subject>Unmanned aerial vehicles</subject><subject>visual detection</subject><subject>Visual tasks</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LAzEQxYMoWGrvgpeA562TZJM03pZ2_YAVQWyvId3Oypa6uya7ov-9Ka0ic3hz-L0Z3iPkksGUMTA3xUs25cDZVIBUIM0JGXGhdSK0Uqf_9nMyCWELAExyLYwckVVW-6Rvkyh0VYfB7egCeyz7um1oW9GnuvRtssxW4ZZmDc2_OvT1OzZ9BPNPtxvcL7lA7GiBzjd183ZBziq3Czg56pgs7_LX-UNSPN8_zrMiKblhfeLScjNLdYparh3XG0g5ykoCV5U2qTMopVo7rcxGC8klkyB15RAwSrkGEGNyfbjb-fZjwNDbbTv4Jr60PDUwA1BKRwoOVMwSgsfKdjGE89-Wgd0XaGOBdl-gPRYYLVcHS42If7gRqdBxfgBbrmnY</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zheng, Ye</creator><creator>Chen, Zhang</creator><creator>Lv, Dailin</creator><creator>Li, Zhixing</creator><creator>Lan, Zhenzhong</creator><creator>Zhao, Shiyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9127-5234</orcidid><orcidid>https://orcid.org/0000-0003-3098-8059</orcidid><orcidid>https://orcid.org/0000-0003-1484-8646</orcidid></search><sort><creationdate>20210401</creationdate><title>Air-to-Air Visual Detection of Micro-UAVs: An Experimental Evaluation of Deep Learning</title><author>Zheng, Ye ; Chen, Zhang ; Lv, Dailin ; Li, Zhixing ; Lan, Zhenzhong ; Zhao, Shiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a4cd8474e75ba27d042e5f5026f794a9e556ba769d7352515057fae0e57fcb003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Image acquisition</topic><topic>Machine learning</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Swarming</topic><topic>Task analysis</topic><topic>UAV detection</topic><topic>Unmanned aerial vehicles</topic><topic>visual detection</topic><topic>Visual tasks</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Ye</creatorcontrib><creatorcontrib>Chen, Zhang</creatorcontrib><creatorcontrib>Lv, Dailin</creatorcontrib><creatorcontrib>Li, Zhixing</creatorcontrib><creatorcontrib>Lan, Zhenzhong</creatorcontrib><creatorcontrib>Zhao, Shiyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Ye</au><au>Chen, Zhang</au><au>Lv, Dailin</au><au>Li, Zhixing</au><au>Lan, Zhenzhong</au><au>Zhao, Shiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air-to-Air Visual Detection of Micro-UAVs: An Experimental Evaluation of Deep Learning</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>6</volume><issue>2</issue><spage>1020</spage><epage>1027</epage><pages>1020-1027</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This letter studies the problem of air-to-air visual detection of micro unmanned aerial vehicles (UAVs) by monocular cameras. This problem is important for many applications such as vision-based swarming of UAVs, malicious UAV detection, and see-and-avoid systems for UAVs. Although deep learning methods have exhibited superior performance in many object detection tasks, their potential for UAV detection has not been well explored. As the first main contribution of this letter, we present a new dataset, named Det-Fly, which consists of more than 13 000 images of a flying target UAV acquired by another flying UAV. Compared to the existing datasets, the proposed one is more comprehensive in the sense that it covers a wide range of practical scenarios with different background scenes, viewing angles, relative distance, flying altitude, and lightning conditions. The second main contribution of this letter is to present an experimental evaluation of eight representative deep-learning algorithms based on the proposed dataset. To the best of our knowledge, this is the first comprehensive experimental evaluation of deep learning algorithms for the task of visual UAV detection so far. The evaluation results highlight some key challenges in the problem of air-to-air UAV detection and suggest potential ways to develop new algorithms in the future. The dataset is available at https://github.com/Jake-WU/Det-Fly .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3056059</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9127-5234</orcidid><orcidid>https://orcid.org/0000-0003-3098-8059</orcidid><orcidid>https://orcid.org/0000-0003-1484-8646</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.1020-1027 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2490800667 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Cameras Datasets Deep learning Feature extraction Image acquisition Machine learning Object detection Object recognition Swarming Task analysis UAV detection Unmanned aerial vehicles visual detection Visual tasks Visualization |
title | Air-to-Air Visual Detection of Micro-UAVs: An Experimental Evaluation of Deep Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air-to-Air%20Visual%20Detection%20of%20Micro-UAVs:%20An%20Experimental%20Evaluation%20of%20Deep%20Learning&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Zheng,%20Ye&rft.date=2021-04-01&rft.volume=6&rft.issue=2&rft.spage=1020&rft.epage=1027&rft.pages=1020-1027&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3056059&rft_dat=%3Cproquest_cross%3E2490800667%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-a4cd8474e75ba27d042e5f5026f794a9e556ba769d7352515057fae0e57fcb003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490800667&rft_id=info:pmid/&rft_ieee_id=9343737&rfr_iscdi=true |