Loading…

Air-to-Air Visual Detection of Micro-UAVs: An Experimental Evaluation of Deep Learning

This letter studies the problem of air-to-air visual detection of micro unmanned aerial vehicles (UAVs) by monocular cameras. This problem is important for many applications such as vision-based swarming of UAVs, malicious UAV detection, and see-and-avoid systems for UAVs. Although deep learning met...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters 2021-04, Vol.6 (2), p.1020-1027
Main Authors: Zheng, Ye, Chen, Zhang, Lv, Dailin, Li, Zhixing, Lan, Zhenzhong, Zhao, Shiyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-a4cd8474e75ba27d042e5f5026f794a9e556ba769d7352515057fae0e57fcb003
cites cdi_FETCH-LOGICAL-c291t-a4cd8474e75ba27d042e5f5026f794a9e556ba769d7352515057fae0e57fcb003
container_end_page 1027
container_issue 2
container_start_page 1020
container_title IEEE robotics and automation letters
container_volume 6
creator Zheng, Ye
Chen, Zhang
Lv, Dailin
Li, Zhixing
Lan, Zhenzhong
Zhao, Shiyu
description This letter studies the problem of air-to-air visual detection of micro unmanned aerial vehicles (UAVs) by monocular cameras. This problem is important for many applications such as vision-based swarming of UAVs, malicious UAV detection, and see-and-avoid systems for UAVs. Although deep learning methods have exhibited superior performance in many object detection tasks, their potential for UAV detection has not been well explored. As the first main contribution of this letter, we present a new dataset, named Det-Fly, which consists of more than 13 000 images of a flying target UAV acquired by another flying UAV. Compared to the existing datasets, the proposed one is more comprehensive in the sense that it covers a wide range of practical scenarios with different background scenes, viewing angles, relative distance, flying altitude, and lightning conditions. The second main contribution of this letter is to present an experimental evaluation of eight representative deep-learning algorithms based on the proposed dataset. To the best of our knowledge, this is the first comprehensive experimental evaluation of deep learning algorithms for the task of visual UAV detection so far. The evaluation results highlight some key challenges in the problem of air-to-air UAV detection and suggest potential ways to develop new algorithms in the future. The dataset is available at https://github.com/Jake-WU/Det-Fly .
doi_str_mv 10.1109/LRA.2021.3056059
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490800667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9343737</ieee_id><sourcerecordid>2490800667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a4cd8474e75ba27d042e5f5026f794a9e556ba769d7352515057fae0e57fcb003</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGrvgpeA562TZJM03pZ2_YAVQWyvId3Oypa6uya7ov-9Ka0ic3hz-L0Z3iPkksGUMTA3xUs25cDZVIBUIM0JGXGhdSK0Uqf_9nMyCWELAExyLYwckVVW-6Rvkyh0VYfB7egCeyz7um1oW9GnuvRtssxW4ZZmDc2_OvT1OzZ9BPNPtxvcL7lA7GiBzjd183ZBziq3Czg56pgs7_LX-UNSPN8_zrMiKblhfeLScjNLdYparh3XG0g5ykoCV5U2qTMopVo7rcxGC8klkyB15RAwSrkGEGNyfbjb-fZjwNDbbTv4Jr60PDUwA1BKRwoOVMwSgsfKdjGE89-Wgd0XaGOBdl-gPRYYLVcHS42If7gRqdBxfgBbrmnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490800667</pqid></control><display><type>article</type><title>Air-to-Air Visual Detection of Micro-UAVs: An Experimental Evaluation of Deep Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zheng, Ye ; Chen, Zhang ; Lv, Dailin ; Li, Zhixing ; Lan, Zhenzhong ; Zhao, Shiyu</creator><creatorcontrib>Zheng, Ye ; Chen, Zhang ; Lv, Dailin ; Li, Zhixing ; Lan, Zhenzhong ; Zhao, Shiyu</creatorcontrib><description>This letter studies the problem of air-to-air visual detection of micro unmanned aerial vehicles (UAVs) by monocular cameras. This problem is important for many applications such as vision-based swarming of UAVs, malicious UAV detection, and see-and-avoid systems for UAVs. Although deep learning methods have exhibited superior performance in many object detection tasks, their potential for UAV detection has not been well explored. As the first main contribution of this letter, we present a new dataset, named Det-Fly, which consists of more than 13 000 images of a flying target UAV acquired by another flying UAV. Compared to the existing datasets, the proposed one is more comprehensive in the sense that it covers a wide range of practical scenarios with different background scenes, viewing angles, relative distance, flying altitude, and lightning conditions. The second main contribution of this letter is to present an experimental evaluation of eight representative deep-learning algorithms based on the proposed dataset. To the best of our knowledge, this is the first comprehensive experimental evaluation of deep learning algorithms for the task of visual UAV detection so far. The evaluation results highlight some key challenges in the problem of air-to-air UAV detection and suggest potential ways to develop new algorithms in the future. The dataset is available at https://github.com/Jake-WU/Det-Fly .</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3056059</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cameras ; Datasets ; Deep learning ; Feature extraction ; Image acquisition ; Machine learning ; Object detection ; Object recognition ; Swarming ; Task analysis ; UAV detection ; Unmanned aerial vehicles ; visual detection ; Visual tasks ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.1020-1027</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a4cd8474e75ba27d042e5f5026f794a9e556ba769d7352515057fae0e57fcb003</citedby><cites>FETCH-LOGICAL-c291t-a4cd8474e75ba27d042e5f5026f794a9e556ba769d7352515057fae0e57fcb003</cites><orcidid>0000-0001-9127-5234 ; 0000-0003-3098-8059 ; 0000-0003-1484-8646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9343737$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Zheng, Ye</creatorcontrib><creatorcontrib>Chen, Zhang</creatorcontrib><creatorcontrib>Lv, Dailin</creatorcontrib><creatorcontrib>Li, Zhixing</creatorcontrib><creatorcontrib>Lan, Zhenzhong</creatorcontrib><creatorcontrib>Zhao, Shiyu</creatorcontrib><title>Air-to-Air Visual Detection of Micro-UAVs: An Experimental Evaluation of Deep Learning</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This letter studies the problem of air-to-air visual detection of micro unmanned aerial vehicles (UAVs) by monocular cameras. This problem is important for many applications such as vision-based swarming of UAVs, malicious UAV detection, and see-and-avoid systems for UAVs. Although deep learning methods have exhibited superior performance in many object detection tasks, their potential for UAV detection has not been well explored. As the first main contribution of this letter, we present a new dataset, named Det-Fly, which consists of more than 13 000 images of a flying target UAV acquired by another flying UAV. Compared to the existing datasets, the proposed one is more comprehensive in the sense that it covers a wide range of practical scenarios with different background scenes, viewing angles, relative distance, flying altitude, and lightning conditions. The second main contribution of this letter is to present an experimental evaluation of eight representative deep-learning algorithms based on the proposed dataset. To the best of our knowledge, this is the first comprehensive experimental evaluation of deep learning algorithms for the task of visual UAV detection so far. The evaluation results highlight some key challenges in the problem of air-to-air UAV detection and suggest potential ways to develop new algorithms in the future. The dataset is available at https://github.com/Jake-WU/Det-Fly .</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Image acquisition</subject><subject>Machine learning</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Swarming</subject><subject>Task analysis</subject><subject>UAV detection</subject><subject>Unmanned aerial vehicles</subject><subject>visual detection</subject><subject>Visual tasks</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LAzEQxYMoWGrvgpeA562TZJM03pZ2_YAVQWyvId3Oypa6uya7ov-9Ka0ic3hz-L0Z3iPkksGUMTA3xUs25cDZVIBUIM0JGXGhdSK0Uqf_9nMyCWELAExyLYwckVVW-6Rvkyh0VYfB7egCeyz7um1oW9GnuvRtssxW4ZZmDc2_OvT1OzZ9BPNPtxvcL7lA7GiBzjd183ZBziq3Czg56pgs7_LX-UNSPN8_zrMiKblhfeLScjNLdYparh3XG0g5ykoCV5U2qTMopVo7rcxGC8klkyB15RAwSrkGEGNyfbjb-fZjwNDbbTv4Jr60PDUwA1BKRwoOVMwSgsfKdjGE89-Wgd0XaGOBdl-gPRYYLVcHS42If7gRqdBxfgBbrmnY</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zheng, Ye</creator><creator>Chen, Zhang</creator><creator>Lv, Dailin</creator><creator>Li, Zhixing</creator><creator>Lan, Zhenzhong</creator><creator>Zhao, Shiyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9127-5234</orcidid><orcidid>https://orcid.org/0000-0003-3098-8059</orcidid><orcidid>https://orcid.org/0000-0003-1484-8646</orcidid></search><sort><creationdate>20210401</creationdate><title>Air-to-Air Visual Detection of Micro-UAVs: An Experimental Evaluation of Deep Learning</title><author>Zheng, Ye ; Chen, Zhang ; Lv, Dailin ; Li, Zhixing ; Lan, Zhenzhong ; Zhao, Shiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a4cd8474e75ba27d042e5f5026f794a9e556ba769d7352515057fae0e57fcb003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Image acquisition</topic><topic>Machine learning</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Swarming</topic><topic>Task analysis</topic><topic>UAV detection</topic><topic>Unmanned aerial vehicles</topic><topic>visual detection</topic><topic>Visual tasks</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Ye</creatorcontrib><creatorcontrib>Chen, Zhang</creatorcontrib><creatorcontrib>Lv, Dailin</creatorcontrib><creatorcontrib>Li, Zhixing</creatorcontrib><creatorcontrib>Lan, Zhenzhong</creatorcontrib><creatorcontrib>Zhao, Shiyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Ye</au><au>Chen, Zhang</au><au>Lv, Dailin</au><au>Li, Zhixing</au><au>Lan, Zhenzhong</au><au>Zhao, Shiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air-to-Air Visual Detection of Micro-UAVs: An Experimental Evaluation of Deep Learning</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>6</volume><issue>2</issue><spage>1020</spage><epage>1027</epage><pages>1020-1027</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This letter studies the problem of air-to-air visual detection of micro unmanned aerial vehicles (UAVs) by monocular cameras. This problem is important for many applications such as vision-based swarming of UAVs, malicious UAV detection, and see-and-avoid systems for UAVs. Although deep learning methods have exhibited superior performance in many object detection tasks, their potential for UAV detection has not been well explored. As the first main contribution of this letter, we present a new dataset, named Det-Fly, which consists of more than 13 000 images of a flying target UAV acquired by another flying UAV. Compared to the existing datasets, the proposed one is more comprehensive in the sense that it covers a wide range of practical scenarios with different background scenes, viewing angles, relative distance, flying altitude, and lightning conditions. The second main contribution of this letter is to present an experimental evaluation of eight representative deep-learning algorithms based on the proposed dataset. To the best of our knowledge, this is the first comprehensive experimental evaluation of deep learning algorithms for the task of visual UAV detection so far. The evaluation results highlight some key challenges in the problem of air-to-air UAV detection and suggest potential ways to develop new algorithms in the future. The dataset is available at https://github.com/Jake-WU/Det-Fly .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3056059</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9127-5234</orcidid><orcidid>https://orcid.org/0000-0003-3098-8059</orcidid><orcidid>https://orcid.org/0000-0003-1484-8646</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.1020-1027
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2490800667
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Cameras
Datasets
Deep learning
Feature extraction
Image acquisition
Machine learning
Object detection
Object recognition
Swarming
Task analysis
UAV detection
Unmanned aerial vehicles
visual detection
Visual tasks
Visualization
title Air-to-Air Visual Detection of Micro-UAVs: An Experimental Evaluation of Deep Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air-to-Air%20Visual%20Detection%20of%20Micro-UAVs:%20An%20Experimental%20Evaluation%20of%20Deep%20Learning&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Zheng,%20Ye&rft.date=2021-04-01&rft.volume=6&rft.issue=2&rft.spage=1020&rft.epage=1027&rft.pages=1020-1027&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3056059&rft_dat=%3Cproquest_cross%3E2490800667%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-a4cd8474e75ba27d042e5f5026f794a9e556ba769d7352515057fae0e57fcb003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490800667&rft_id=info:pmid/&rft_ieee_id=9343737&rfr_iscdi=true