Loading…

Texture evolution in nanocrystalline Ta under shock compression

We present systematic investigation on texture evolution in nanocrystalline Ta under planar shock wave loading at different impact velocities. Seven representative initial textures and two loading directions are studied via large-scale molecular dynamics simulations. Orientation mapping and texture...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2021-02, Vol.129 (7)
Main Authors: Hu, S. C., Huang, J. W., Feng, Z. D., Zhang, Y. Y., Zhong, Z. Y., Cai, Y., Luo, S. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-ed31a92e1df251b49a58f2eaf6fc5cdbf345090d4cafc6f9265f23324289e8083
cites cdi_FETCH-LOGICAL-c327t-ed31a92e1df251b49a58f2eaf6fc5cdbf345090d4cafc6f9265f23324289e8083
container_end_page
container_issue 7
container_start_page
container_title Journal of applied physics
container_volume 129
creator Hu, S. C.
Huang, J. W.
Feng, Z. D.
Zhang, Y. Y.
Zhong, Z. Y.
Cai, Y.
Luo, S. N.
description We present systematic investigation on texture evolution in nanocrystalline Ta under planar shock wave loading at different impact velocities. Seven representative initial textures and two loading directions are studied via large-scale molecular dynamics simulations. Orientation mapping and texture analysis, including orientation distribution functions, pole figures, and inverse pole figures, are performed. Shock compression induces a ⟨ 221 ⟩ texture in nanocrystalline Ta initially with no texture, ⟨ 100 ⟩ fiber texture, { 100 } ⟨ 100 ⟩ texture, and θ + γ rolling texture via twinning, which can be traced back to grains initially with ⟨ 100 ⟩. A ⟨ 100 ⟩ texture is induced via twinning for nanocrystalline Ta initially with no texture, ⟨ 110 ⟩ fiber texture, and α + γ rolling texture and can be traced back to ⟨ 110 ⟩. Dislocation slip and grain boundary sliding lead to the movement of ⟨ 110 ⟩ toward ⟨ 111 ⟩, and the strengthening of ⟨ 100 ⟩ and ⟨ 111 ⟩ orientation densities. The generation of new textures is observed for most cases. However, no new texture is found in the ⟨ 111 ⟩ fiber texture case for shock loading parallel to the fiber, and a much slower elastic–plastic transition occurs due to the lack of deformation twinning.
doi_str_mv 10.1063/5.0033153
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490820113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490820113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ed31a92e1df251b49a58f2eaf6fc5cdbf345090d4cafc6f9265f23324289e8083</originalsourceid><addsrcrecordid>eNqd0E9LwzAYBvAgCs7pwW8Q8KTQ-SZp2uQkMvwHAy_1HLI0wc4uqUk73Le3owPvnt7Lj_fheRC6JrAgULB7vgBgjHB2gmYEhMxKzuEUzQAoyYQs5Tm6SGkDQIhgcoYeKvvTD9Fiuwvt0DfB48Zjr30wcZ963baNt7jSePC1jTh9BvOFTdh20aY06kt05nSb7NXxztHH81O1fM1W7y9vy8dVZhgt-8zWjGhJLakd5WSdS82Fo1a7whlu6rVjOQcJdW60M4WTtOCOMkZzKqQVINgc3Ux_uxi-B5t6tQlD9GOkorkEQcdCbFS3kzIxpBStU11stjruFQF12EdxddxntHeTTabp9aH5__AuxD-outqxX1SHc6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490820113</pqid></control><display><type>article</type><title>Texture evolution in nanocrystalline Ta under shock compression</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Hu, S. C. ; Huang, J. W. ; Feng, Z. D. ; Zhang, Y. Y. ; Zhong, Z. Y. ; Cai, Y. ; Luo, S. N.</creator><creatorcontrib>Hu, S. C. ; Huang, J. W. ; Feng, Z. D. ; Zhang, Y. Y. ; Zhong, Z. Y. ; Cai, Y. ; Luo, S. N.</creatorcontrib><description>We present systematic investigation on texture evolution in nanocrystalline Ta under planar shock wave loading at different impact velocities. Seven representative initial textures and two loading directions are studied via large-scale molecular dynamics simulations. Orientation mapping and texture analysis, including orientation distribution functions, pole figures, and inverse pole figures, are performed. Shock compression induces a ⟨ 221 ⟩ texture in nanocrystalline Ta initially with no texture, ⟨ 100 ⟩ fiber texture, { 100 } ⟨ 100 ⟩ texture, and θ + γ rolling texture via twinning, which can be traced back to grains initially with ⟨ 100 ⟩. A ⟨ 100 ⟩ texture is induced via twinning for nanocrystalline Ta initially with no texture, ⟨ 110 ⟩ fiber texture, and α + γ rolling texture and can be traced back to ⟨ 110 ⟩. Dislocation slip and grain boundary sliding lead to the movement of ⟨ 110 ⟩ toward ⟨ 111 ⟩, and the strengthening of ⟨ 100 ⟩ and ⟨ 111 ⟩ orientation densities. The generation of new textures is observed for most cases. However, no new texture is found in the ⟨ 111 ⟩ fiber texture case for shock loading parallel to the fiber, and a much slower elastic–plastic transition occurs due to the lack of deformation twinning.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0033153</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Distribution functions ; Elastic deformation ; Evolution ; Grain boundary sliding ; Impact velocity ; Molecular dynamics ; Nanocrystals ; Orientation ; Pole figures ; Rolling texture ; Shock loading ; Shock waves ; Twinning</subject><ispartof>Journal of applied physics, 2021-02, Vol.129 (7)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-ed31a92e1df251b49a58f2eaf6fc5cdbf345090d4cafc6f9265f23324289e8083</citedby><cites>FETCH-LOGICAL-c327t-ed31a92e1df251b49a58f2eaf6fc5cdbf345090d4cafc6f9265f23324289e8083</cites><orcidid>0000-0001-9149-9414 ; 0000-0002-7538-0541 ; 0000-0001-8763-6324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Hu, S. C.</creatorcontrib><creatorcontrib>Huang, J. W.</creatorcontrib><creatorcontrib>Feng, Z. D.</creatorcontrib><creatorcontrib>Zhang, Y. Y.</creatorcontrib><creatorcontrib>Zhong, Z. Y.</creatorcontrib><creatorcontrib>Cai, Y.</creatorcontrib><creatorcontrib>Luo, S. N.</creatorcontrib><title>Texture evolution in nanocrystalline Ta under shock compression</title><title>Journal of applied physics</title><description>We present systematic investigation on texture evolution in nanocrystalline Ta under planar shock wave loading at different impact velocities. Seven representative initial textures and two loading directions are studied via large-scale molecular dynamics simulations. Orientation mapping and texture analysis, including orientation distribution functions, pole figures, and inverse pole figures, are performed. Shock compression induces a ⟨ 221 ⟩ texture in nanocrystalline Ta initially with no texture, ⟨ 100 ⟩ fiber texture, { 100 } ⟨ 100 ⟩ texture, and θ + γ rolling texture via twinning, which can be traced back to grains initially with ⟨ 100 ⟩. A ⟨ 100 ⟩ texture is induced via twinning for nanocrystalline Ta initially with no texture, ⟨ 110 ⟩ fiber texture, and α + γ rolling texture and can be traced back to ⟨ 110 ⟩. Dislocation slip and grain boundary sliding lead to the movement of ⟨ 110 ⟩ toward ⟨ 111 ⟩, and the strengthening of ⟨ 100 ⟩ and ⟨ 111 ⟩ orientation densities. The generation of new textures is observed for most cases. However, no new texture is found in the ⟨ 111 ⟩ fiber texture case for shock loading parallel to the fiber, and a much slower elastic–plastic transition occurs due to the lack of deformation twinning.</description><subject>Applied physics</subject><subject>Distribution functions</subject><subject>Elastic deformation</subject><subject>Evolution</subject><subject>Grain boundary sliding</subject><subject>Impact velocity</subject><subject>Molecular dynamics</subject><subject>Nanocrystals</subject><subject>Orientation</subject><subject>Pole figures</subject><subject>Rolling texture</subject><subject>Shock loading</subject><subject>Shock waves</subject><subject>Twinning</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0E9LwzAYBvAgCs7pwW8Q8KTQ-SZp2uQkMvwHAy_1HLI0wc4uqUk73Le3owPvnt7Lj_fheRC6JrAgULB7vgBgjHB2gmYEhMxKzuEUzQAoyYQs5Tm6SGkDQIhgcoYeKvvTD9Fiuwvt0DfB48Zjr30wcZ963baNt7jSePC1jTh9BvOFTdh20aY06kt05nSb7NXxztHH81O1fM1W7y9vy8dVZhgt-8zWjGhJLakd5WSdS82Fo1a7whlu6rVjOQcJdW60M4WTtOCOMkZzKqQVINgc3Ux_uxi-B5t6tQlD9GOkorkEQcdCbFS3kzIxpBStU11stjruFQF12EdxddxntHeTTabp9aH5__AuxD-outqxX1SHc6E</recordid><startdate>20210221</startdate><enddate>20210221</enddate><creator>Hu, S. C.</creator><creator>Huang, J. W.</creator><creator>Feng, Z. D.</creator><creator>Zhang, Y. Y.</creator><creator>Zhong, Z. Y.</creator><creator>Cai, Y.</creator><creator>Luo, S. N.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9149-9414</orcidid><orcidid>https://orcid.org/0000-0002-7538-0541</orcidid><orcidid>https://orcid.org/0000-0001-8763-6324</orcidid></search><sort><creationdate>20210221</creationdate><title>Texture evolution in nanocrystalline Ta under shock compression</title><author>Hu, S. C. ; Huang, J. W. ; Feng, Z. D. ; Zhang, Y. Y. ; Zhong, Z. Y. ; Cai, Y. ; Luo, S. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ed31a92e1df251b49a58f2eaf6fc5cdbf345090d4cafc6f9265f23324289e8083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Distribution functions</topic><topic>Elastic deformation</topic><topic>Evolution</topic><topic>Grain boundary sliding</topic><topic>Impact velocity</topic><topic>Molecular dynamics</topic><topic>Nanocrystals</topic><topic>Orientation</topic><topic>Pole figures</topic><topic>Rolling texture</topic><topic>Shock loading</topic><topic>Shock waves</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, S. C.</creatorcontrib><creatorcontrib>Huang, J. W.</creatorcontrib><creatorcontrib>Feng, Z. D.</creatorcontrib><creatorcontrib>Zhang, Y. Y.</creatorcontrib><creatorcontrib>Zhong, Z. Y.</creatorcontrib><creatorcontrib>Cai, Y.</creatorcontrib><creatorcontrib>Luo, S. N.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, S. C.</au><au>Huang, J. W.</au><au>Feng, Z. D.</au><au>Zhang, Y. Y.</au><au>Zhong, Z. Y.</au><au>Cai, Y.</au><au>Luo, S. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Texture evolution in nanocrystalline Ta under shock compression</atitle><jtitle>Journal of applied physics</jtitle><date>2021-02-21</date><risdate>2021</risdate><volume>129</volume><issue>7</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We present systematic investigation on texture evolution in nanocrystalline Ta under planar shock wave loading at different impact velocities. Seven representative initial textures and two loading directions are studied via large-scale molecular dynamics simulations. Orientation mapping and texture analysis, including orientation distribution functions, pole figures, and inverse pole figures, are performed. Shock compression induces a ⟨ 221 ⟩ texture in nanocrystalline Ta initially with no texture, ⟨ 100 ⟩ fiber texture, { 100 } ⟨ 100 ⟩ texture, and θ + γ rolling texture via twinning, which can be traced back to grains initially with ⟨ 100 ⟩. A ⟨ 100 ⟩ texture is induced via twinning for nanocrystalline Ta initially with no texture, ⟨ 110 ⟩ fiber texture, and α + γ rolling texture and can be traced back to ⟨ 110 ⟩. Dislocation slip and grain boundary sliding lead to the movement of ⟨ 110 ⟩ toward ⟨ 111 ⟩, and the strengthening of ⟨ 100 ⟩ and ⟨ 111 ⟩ orientation densities. The generation of new textures is observed for most cases. However, no new texture is found in the ⟨ 111 ⟩ fiber texture case for shock loading parallel to the fiber, and a much slower elastic–plastic transition occurs due to the lack of deformation twinning.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0033153</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9149-9414</orcidid><orcidid>https://orcid.org/0000-0002-7538-0541</orcidid><orcidid>https://orcid.org/0000-0001-8763-6324</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2021-02, Vol.129 (7)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2490820113
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Distribution functions
Elastic deformation
Evolution
Grain boundary sliding
Impact velocity
Molecular dynamics
Nanocrystals
Orientation
Pole figures
Rolling texture
Shock loading
Shock waves
Twinning
title Texture evolution in nanocrystalline Ta under shock compression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-26T10%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Texture%20evolution%20in%20nanocrystalline%20Ta%20under%20shock%20compression&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Hu,%20S.%20C.&rft.date=2021-02-21&rft.volume=129&rft.issue=7&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0033153&rft_dat=%3Cproquest_cross%3E2490820113%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-ed31a92e1df251b49a58f2eaf6fc5cdbf345090d4cafc6f9265f23324289e8083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490820113&rft_id=info:pmid/&rfr_iscdi=true