Loading…
Texture evolution in nanocrystalline Ta under shock compression
We present systematic investigation on texture evolution in nanocrystalline Ta under planar shock wave loading at different impact velocities. Seven representative initial textures and two loading directions are studied via large-scale molecular dynamics simulations. Orientation mapping and texture...
Saved in:
Published in: | Journal of applied physics 2021-02, Vol.129 (7) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-ed31a92e1df251b49a58f2eaf6fc5cdbf345090d4cafc6f9265f23324289e8083 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-ed31a92e1df251b49a58f2eaf6fc5cdbf345090d4cafc6f9265f23324289e8083 |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 129 |
creator | Hu, S. C. Huang, J. W. Feng, Z. D. Zhang, Y. Y. Zhong, Z. Y. Cai, Y. Luo, S. N. |
description | We present systematic investigation on texture evolution in nanocrystalline Ta under planar shock wave loading at different impact velocities. Seven representative initial textures and two loading directions are studied via large-scale molecular dynamics simulations. Orientation mapping and texture analysis, including orientation distribution functions, pole figures, and inverse pole figures, are performed. Shock compression induces a
⟨
221
⟩ texture in nanocrystalline Ta initially with no texture,
⟨
100
⟩ fiber texture,
{
100
}
⟨
100
⟩ texture, and
θ
+
γ rolling texture via twinning, which can be traced back to grains initially with
⟨
100
⟩. A
⟨
100
⟩ texture is induced via twinning for nanocrystalline Ta initially with no texture,
⟨
110
⟩ fiber texture, and
α
+
γ rolling texture and can be traced back to
⟨
110
⟩. Dislocation slip and grain boundary sliding lead to the movement of
⟨
110
⟩ toward
⟨
111
⟩, and the strengthening of
⟨
100
⟩ and
⟨
111
⟩ orientation densities. The generation of new textures is observed for most cases. However, no new texture is found in the
⟨
111
⟩ fiber texture case for shock loading parallel to the fiber, and a much slower elastic–plastic transition occurs due to the lack of deformation twinning. |
doi_str_mv | 10.1063/5.0033153 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490820113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490820113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ed31a92e1df251b49a58f2eaf6fc5cdbf345090d4cafc6f9265f23324289e8083</originalsourceid><addsrcrecordid>eNqd0E9LwzAYBvAgCs7pwW8Q8KTQ-SZp2uQkMvwHAy_1HLI0wc4uqUk73Le3owPvnt7Lj_fheRC6JrAgULB7vgBgjHB2gmYEhMxKzuEUzQAoyYQs5Tm6SGkDQIhgcoYeKvvTD9Fiuwvt0DfB48Zjr30wcZ963baNt7jSePC1jTh9BvOFTdh20aY06kt05nSb7NXxztHH81O1fM1W7y9vy8dVZhgt-8zWjGhJLakd5WSdS82Fo1a7whlu6rVjOQcJdW60M4WTtOCOMkZzKqQVINgc3Ux_uxi-B5t6tQlD9GOkorkEQcdCbFS3kzIxpBStU11stjruFQF12EdxddxntHeTTabp9aH5__AuxD-outqxX1SHc6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490820113</pqid></control><display><type>article</type><title>Texture evolution in nanocrystalline Ta under shock compression</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Hu, S. C. ; Huang, J. W. ; Feng, Z. D. ; Zhang, Y. Y. ; Zhong, Z. Y. ; Cai, Y. ; Luo, S. N.</creator><creatorcontrib>Hu, S. C. ; Huang, J. W. ; Feng, Z. D. ; Zhang, Y. Y. ; Zhong, Z. Y. ; Cai, Y. ; Luo, S. N.</creatorcontrib><description>We present systematic investigation on texture evolution in nanocrystalline Ta under planar shock wave loading at different impact velocities. Seven representative initial textures and two loading directions are studied via large-scale molecular dynamics simulations. Orientation mapping and texture analysis, including orientation distribution functions, pole figures, and inverse pole figures, are performed. Shock compression induces a
⟨
221
⟩ texture in nanocrystalline Ta initially with no texture,
⟨
100
⟩ fiber texture,
{
100
}
⟨
100
⟩ texture, and
θ
+
γ rolling texture via twinning, which can be traced back to grains initially with
⟨
100
⟩. A
⟨
100
⟩ texture is induced via twinning for nanocrystalline Ta initially with no texture,
⟨
110
⟩ fiber texture, and
α
+
γ rolling texture and can be traced back to
⟨
110
⟩. Dislocation slip and grain boundary sliding lead to the movement of
⟨
110
⟩ toward
⟨
111
⟩, and the strengthening of
⟨
100
⟩ and
⟨
111
⟩ orientation densities. The generation of new textures is observed for most cases. However, no new texture is found in the
⟨
111
⟩ fiber texture case for shock loading parallel to the fiber, and a much slower elastic–plastic transition occurs due to the lack of deformation twinning.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0033153</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Distribution functions ; Elastic deformation ; Evolution ; Grain boundary sliding ; Impact velocity ; Molecular dynamics ; Nanocrystals ; Orientation ; Pole figures ; Rolling texture ; Shock loading ; Shock waves ; Twinning</subject><ispartof>Journal of applied physics, 2021-02, Vol.129 (7)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-ed31a92e1df251b49a58f2eaf6fc5cdbf345090d4cafc6f9265f23324289e8083</citedby><cites>FETCH-LOGICAL-c327t-ed31a92e1df251b49a58f2eaf6fc5cdbf345090d4cafc6f9265f23324289e8083</cites><orcidid>0000-0001-9149-9414 ; 0000-0002-7538-0541 ; 0000-0001-8763-6324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Hu, S. C.</creatorcontrib><creatorcontrib>Huang, J. W.</creatorcontrib><creatorcontrib>Feng, Z. D.</creatorcontrib><creatorcontrib>Zhang, Y. Y.</creatorcontrib><creatorcontrib>Zhong, Z. Y.</creatorcontrib><creatorcontrib>Cai, Y.</creatorcontrib><creatorcontrib>Luo, S. N.</creatorcontrib><title>Texture evolution in nanocrystalline Ta under shock compression</title><title>Journal of applied physics</title><description>We present systematic investigation on texture evolution in nanocrystalline Ta under planar shock wave loading at different impact velocities. Seven representative initial textures and two loading directions are studied via large-scale molecular dynamics simulations. Orientation mapping and texture analysis, including orientation distribution functions, pole figures, and inverse pole figures, are performed. Shock compression induces a
⟨
221
⟩ texture in nanocrystalline Ta initially with no texture,
⟨
100
⟩ fiber texture,
{
100
}
⟨
100
⟩ texture, and
θ
+
γ rolling texture via twinning, which can be traced back to grains initially with
⟨
100
⟩. A
⟨
100
⟩ texture is induced via twinning for nanocrystalline Ta initially with no texture,
⟨
110
⟩ fiber texture, and
α
+
γ rolling texture and can be traced back to
⟨
110
⟩. Dislocation slip and grain boundary sliding lead to the movement of
⟨
110
⟩ toward
⟨
111
⟩, and the strengthening of
⟨
100
⟩ and
⟨
111
⟩ orientation densities. The generation of new textures is observed for most cases. However, no new texture is found in the
⟨
111
⟩ fiber texture case for shock loading parallel to the fiber, and a much slower elastic–plastic transition occurs due to the lack of deformation twinning.</description><subject>Applied physics</subject><subject>Distribution functions</subject><subject>Elastic deformation</subject><subject>Evolution</subject><subject>Grain boundary sliding</subject><subject>Impact velocity</subject><subject>Molecular dynamics</subject><subject>Nanocrystals</subject><subject>Orientation</subject><subject>Pole figures</subject><subject>Rolling texture</subject><subject>Shock loading</subject><subject>Shock waves</subject><subject>Twinning</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0E9LwzAYBvAgCs7pwW8Q8KTQ-SZp2uQkMvwHAy_1HLI0wc4uqUk73Le3owPvnt7Lj_fheRC6JrAgULB7vgBgjHB2gmYEhMxKzuEUzQAoyYQs5Tm6SGkDQIhgcoYeKvvTD9Fiuwvt0DfB48Zjr30wcZ963baNt7jSePC1jTh9BvOFTdh20aY06kt05nSb7NXxztHH81O1fM1W7y9vy8dVZhgt-8zWjGhJLakd5WSdS82Fo1a7whlu6rVjOQcJdW60M4WTtOCOMkZzKqQVINgc3Ux_uxi-B5t6tQlD9GOkorkEQcdCbFS3kzIxpBStU11stjruFQF12EdxddxntHeTTabp9aH5__AuxD-outqxX1SHc6E</recordid><startdate>20210221</startdate><enddate>20210221</enddate><creator>Hu, S. C.</creator><creator>Huang, J. W.</creator><creator>Feng, Z. D.</creator><creator>Zhang, Y. Y.</creator><creator>Zhong, Z. Y.</creator><creator>Cai, Y.</creator><creator>Luo, S. N.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9149-9414</orcidid><orcidid>https://orcid.org/0000-0002-7538-0541</orcidid><orcidid>https://orcid.org/0000-0001-8763-6324</orcidid></search><sort><creationdate>20210221</creationdate><title>Texture evolution in nanocrystalline Ta under shock compression</title><author>Hu, S. C. ; Huang, J. W. ; Feng, Z. D. ; Zhang, Y. Y. ; Zhong, Z. Y. ; Cai, Y. ; Luo, S. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ed31a92e1df251b49a58f2eaf6fc5cdbf345090d4cafc6f9265f23324289e8083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Distribution functions</topic><topic>Elastic deformation</topic><topic>Evolution</topic><topic>Grain boundary sliding</topic><topic>Impact velocity</topic><topic>Molecular dynamics</topic><topic>Nanocrystals</topic><topic>Orientation</topic><topic>Pole figures</topic><topic>Rolling texture</topic><topic>Shock loading</topic><topic>Shock waves</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, S. C.</creatorcontrib><creatorcontrib>Huang, J. W.</creatorcontrib><creatorcontrib>Feng, Z. D.</creatorcontrib><creatorcontrib>Zhang, Y. Y.</creatorcontrib><creatorcontrib>Zhong, Z. Y.</creatorcontrib><creatorcontrib>Cai, Y.</creatorcontrib><creatorcontrib>Luo, S. N.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, S. C.</au><au>Huang, J. W.</au><au>Feng, Z. D.</au><au>Zhang, Y. Y.</au><au>Zhong, Z. Y.</au><au>Cai, Y.</au><au>Luo, S. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Texture evolution in nanocrystalline Ta under shock compression</atitle><jtitle>Journal of applied physics</jtitle><date>2021-02-21</date><risdate>2021</risdate><volume>129</volume><issue>7</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We present systematic investigation on texture evolution in nanocrystalline Ta under planar shock wave loading at different impact velocities. Seven representative initial textures and two loading directions are studied via large-scale molecular dynamics simulations. Orientation mapping and texture analysis, including orientation distribution functions, pole figures, and inverse pole figures, are performed. Shock compression induces a
⟨
221
⟩ texture in nanocrystalline Ta initially with no texture,
⟨
100
⟩ fiber texture,
{
100
}
⟨
100
⟩ texture, and
θ
+
γ rolling texture via twinning, which can be traced back to grains initially with
⟨
100
⟩. A
⟨
100
⟩ texture is induced via twinning for nanocrystalline Ta initially with no texture,
⟨
110
⟩ fiber texture, and
α
+
γ rolling texture and can be traced back to
⟨
110
⟩. Dislocation slip and grain boundary sliding lead to the movement of
⟨
110
⟩ toward
⟨
111
⟩, and the strengthening of
⟨
100
⟩ and
⟨
111
⟩ orientation densities. The generation of new textures is observed for most cases. However, no new texture is found in the
⟨
111
⟩ fiber texture case for shock loading parallel to the fiber, and a much slower elastic–plastic transition occurs due to the lack of deformation twinning.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0033153</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9149-9414</orcidid><orcidid>https://orcid.org/0000-0002-7538-0541</orcidid><orcidid>https://orcid.org/0000-0001-8763-6324</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2021-02, Vol.129 (7) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2490820113 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Distribution functions Elastic deformation Evolution Grain boundary sliding Impact velocity Molecular dynamics Nanocrystals Orientation Pole figures Rolling texture Shock loading Shock waves Twinning |
title | Texture evolution in nanocrystalline Ta under shock compression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-26T10%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Texture%20evolution%20in%20nanocrystalline%20Ta%20under%20shock%20compression&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Hu,%20S.%20C.&rft.date=2021-02-21&rft.volume=129&rft.issue=7&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0033153&rft_dat=%3Cproquest_cross%3E2490820113%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-ed31a92e1df251b49a58f2eaf6fc5cdbf345090d4cafc6f9265f23324289e8083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490820113&rft_id=info:pmid/&rfr_iscdi=true |