Loading…

Grinding performance of AISI D6 steel using CBN wheel vitrified and resinoid bonded

In the last decades, manufacturers attracted much attention to developing processes with competitivity, sustainability, and productivity. One of the most important developments was related to employing more efficient tools. CBN was developed to improve the performance of the abrasive materials by hi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2019-12, Vol.105 (5-6), p.2167-2182
Main Authors: Sato, Bruno Kenta, Rodriguez, Rafael Lemes, Talon, Anthony Gaspar, Lopes, José Claudio, Mello, Hamilton José, Aguiar, Paulo Roberto, Bianchi, Eduardo Carlos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the last decades, manufacturers attracted much attention to developing processes with competitivity, sustainability, and productivity. One of the most important developments was related to employing more efficient tools. CBN was developed to improve the performance of the abrasive materials by higher hardness, thermal conduction, and chemical stability. In this sense, not only abrasive grains’ properties are important for tool performance, but also bonds are essential for the consolidation of CBN abrasives in manufacturing industry. In order to contribute to findings about the performance of applied bonds in CBN grinding wheels, this work aims to compare CBN grinding wheels composed of vitrified bond and resinoid bond. The workpiece material was AISI D6 special steel which is widely used to manufacture stamping matrix, and this application requires parts with high geometrical and dimensional precision, also high-quality surface finish. For the results analysis and discussion, tangential grinding force and acoustic emission were monitored in order to analyze the process efficiency and surface roughness and G ratio was measured; besides scanning electron, confocal microscopy and optical microscopy were used for the analysis of the ground surface. The vitrified bond provided more efficient results in terms of surface roughness and G ratio in comparison with resinoid bond. However, acoustic emission and tangential grinding force were lower in grinding with CBN resinoid bond what indicated lower mechanical loads. Therefore, this paper presents relevant information to select the appropriate bond to CBN grinding wheel application.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-019-04407-5