Loading…
Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding
In this paper, ambient temperature (room temperature) accumulative roll bonding (ARB) is performed on Al2024 aluminum alloys to assess grain refining phenomenon. The microstructural evaluations show reduction in the grain size from about 25 μm to about 350 nm by a factor of ∼70 upon six cycles of AR...
Saved in:
Published in: | International journal of advanced manufacturing technology 2017-10, Vol.93 (1-4), p.681-689 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-531f8d06641dc4e39fb09d892c052af180b8e57a1d19183dedab2a5cea39c0b03 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-531f8d06641dc4e39fb09d892c052af180b8e57a1d19183dedab2a5cea39c0b03 |
container_end_page | 689 |
container_issue | 1-4 |
container_start_page | 681 |
container_title | International journal of advanced manufacturing technology |
container_volume | 93 |
creator | Khatami, Ramin Fattah-alhosseini, Arash Mazaheri, Yousef Keshavarz, Mohsen K. Haghshenas, Meysam |
description | In this paper, ambient temperature (room temperature) accumulative roll bonding (ARB) is performed on Al2024 aluminum alloys to assess grain refining phenomenon. The microstructural evaluations show reduction in the grain size from about 25 μm to about 350 nm by a factor of ∼70 upon six cycles of ARB; X-ray diffraction patterns were used to assess the increase in the dislocation density. The yield and tensile strength of the ultrafine grained Al2024 after the sixth cycle, 465 and 492 MPa, were about 650 and 186% higher than that of the as-received sample, 62 and 172 MPa, respectively. Investigating the fractured surfaces of the tensile test specimens by scanning electron microscopy showed that ARB process alters the mode of fracture substantially; fracture surface of annealed sample consists of deep equiaxed dimples which is an indication of ductile fracture. However, this changes in the ARBed specimens to shear ductile rupture with shallow and small elongated dimples. |
doi_str_mv | 10.1007/s00170-017-0547-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490841037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950835065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-531f8d06641dc4e39fb09d892c052af180b8e57a1d19183dedab2a5cea39c0b03</originalsourceid><addsrcrecordid>eNp9kU1PwzAMhiMEEmPwA7hF4lxwPpsep4kvaYgLnKM0SUenrh1JO2n79aQqBy7sYkv289qWX4RuCdwTgPwhApAcshQyEDzPjmdoRjhjGQMiztEMqFQZy6W6RFcxbhItiVQztH-rbehiHwbbD8E02O-7ZujrrsWmdXjr7Zdpa5sau9DtfOhrH3FX4aHpg6nq1uN1MCk5vFhQoHzErI8xFcoDNtYO26Exfb33OHRNg8uudXW7vkYXlWmiv_nNc_T59PixfMlW78-vy8UqsyynfSYYqZQDKTlxlntWVCUUThXUgqCmIgpK5UVuiCMFUcx5Z0pqhPWGFRZKYHN0N81NZ30PPvZ60w2hTSs15QUoToDlJykqqQTOC36KIoUAxQRIkSgyUeNbY_CV3oV6a8JBE9CjVXqySqegR6v0MWnopImJbdc-_Jn8r-gH2k2XQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262604494</pqid></control><display><type>article</type><title>Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding</title><source>Springer Nature</source><creator>Khatami, Ramin ; Fattah-alhosseini, Arash ; Mazaheri, Yousef ; Keshavarz, Mohsen K. ; Haghshenas, Meysam</creator><creatorcontrib>Khatami, Ramin ; Fattah-alhosseini, Arash ; Mazaheri, Yousef ; Keshavarz, Mohsen K. ; Haghshenas, Meysam</creatorcontrib><description>In this paper, ambient temperature (room temperature) accumulative roll bonding (ARB) is performed on Al2024 aluminum alloys to assess grain refining phenomenon. The microstructural evaluations show reduction in the grain size from about 25 μm to about 350 nm by a factor of ∼70 upon six cycles of ARB; X-ray diffraction patterns were used to assess the increase in the dislocation density. The yield and tensile strength of the ultrafine grained Al2024 after the sixth cycle, 465 and 492 MPa, were about 650 and 186% higher than that of the as-received sample, 62 and 172 MPa, respectively. Investigating the fractured surfaces of the tensile test specimens by scanning electron microscopy showed that ARB process alters the mode of fracture substantially; fracture surface of annealed sample consists of deep equiaxed dimples which is an indication of ductile fracture. However, this changes in the ARBed specimens to shear ductile rupture with shallow and small elongated dimples.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-017-0547-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aluminum base alloys ; Ambient temperature ; CAE) and Design ; Computer-Aided Engineering (CAD ; Diffraction patterns ; Dimpling ; Dislocation density ; Ductile fracture ; Elongation ; Engineering ; Fracture surfaces ; Grain refinement ; Grain size ; Heat treating ; Industrial and Production Engineering ; Mechanical Engineering ; Mechanical properties ; Media Management ; Microstructure ; Original Article ; Roll bonding ; Room temperature ; Scanning electron microscopy ; Tensile strength ; Tensile tests ; Ultrafines</subject><ispartof>International journal of advanced manufacturing technology, 2017-10, Vol.93 (1-4), p.681-689</ispartof><rights>Springer-Verlag London 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Springer-Verlag London 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-531f8d06641dc4e39fb09d892c052af180b8e57a1d19183dedab2a5cea39c0b03</citedby><cites>FETCH-LOGICAL-c372t-531f8d06641dc4e39fb09d892c052af180b8e57a1d19183dedab2a5cea39c0b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khatami, Ramin</creatorcontrib><creatorcontrib>Fattah-alhosseini, Arash</creatorcontrib><creatorcontrib>Mazaheri, Yousef</creatorcontrib><creatorcontrib>Keshavarz, Mohsen K.</creatorcontrib><creatorcontrib>Haghshenas, Meysam</creatorcontrib><title>Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In this paper, ambient temperature (room temperature) accumulative roll bonding (ARB) is performed on Al2024 aluminum alloys to assess grain refining phenomenon. The microstructural evaluations show reduction in the grain size from about 25 μm to about 350 nm by a factor of ∼70 upon six cycles of ARB; X-ray diffraction patterns were used to assess the increase in the dislocation density. The yield and tensile strength of the ultrafine grained Al2024 after the sixth cycle, 465 and 492 MPa, were about 650 and 186% higher than that of the as-received sample, 62 and 172 MPa, respectively. Investigating the fractured surfaces of the tensile test specimens by scanning electron microscopy showed that ARB process alters the mode of fracture substantially; fracture surface of annealed sample consists of deep equiaxed dimples which is an indication of ductile fracture. However, this changes in the ARBed specimens to shear ductile rupture with shallow and small elongated dimples.</description><subject>Aluminum base alloys</subject><subject>Ambient temperature</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Diffraction patterns</subject><subject>Dimpling</subject><subject>Dislocation density</subject><subject>Ductile fracture</subject><subject>Elongation</subject><subject>Engineering</subject><subject>Fracture surfaces</subject><subject>Grain refinement</subject><subject>Grain size</subject><subject>Heat treating</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Microstructure</subject><subject>Original Article</subject><subject>Roll bonding</subject><subject>Room temperature</subject><subject>Scanning electron microscopy</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Ultrafines</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PwzAMhiMEEmPwA7hF4lxwPpsep4kvaYgLnKM0SUenrh1JO2n79aQqBy7sYkv289qWX4RuCdwTgPwhApAcshQyEDzPjmdoRjhjGQMiztEMqFQZy6W6RFcxbhItiVQztH-rbehiHwbbD8E02O-7ZujrrsWmdXjr7Zdpa5sau9DtfOhrH3FX4aHpg6nq1uN1MCk5vFhQoHzErI8xFcoDNtYO26Exfb33OHRNg8uudXW7vkYXlWmiv_nNc_T59PixfMlW78-vy8UqsyynfSYYqZQDKTlxlntWVCUUThXUgqCmIgpK5UVuiCMFUcx5Z0pqhPWGFRZKYHN0N81NZ30PPvZ60w2hTSs15QUoToDlJykqqQTOC36KIoUAxQRIkSgyUeNbY_CV3oV6a8JBE9CjVXqySqegR6v0MWnopImJbdc-_Jn8r-gH2k2XQQ</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Khatami, Ramin</creator><creator>Fattah-alhosseini, Arash</creator><creator>Mazaheri, Yousef</creator><creator>Keshavarz, Mohsen K.</creator><creator>Haghshenas, Meysam</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171001</creationdate><title>Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding</title><author>Khatami, Ramin ; Fattah-alhosseini, Arash ; Mazaheri, Yousef ; Keshavarz, Mohsen K. ; Haghshenas, Meysam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-531f8d06641dc4e39fb09d892c052af180b8e57a1d19183dedab2a5cea39c0b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum base alloys</topic><topic>Ambient temperature</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Diffraction patterns</topic><topic>Dimpling</topic><topic>Dislocation density</topic><topic>Ductile fracture</topic><topic>Elongation</topic><topic>Engineering</topic><topic>Fracture surfaces</topic><topic>Grain refinement</topic><topic>Grain size</topic><topic>Heat treating</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Microstructure</topic><topic>Original Article</topic><topic>Roll bonding</topic><topic>Room temperature</topic><topic>Scanning electron microscopy</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatami, Ramin</creatorcontrib><creatorcontrib>Fattah-alhosseini, Arash</creatorcontrib><creatorcontrib>Mazaheri, Yousef</creatorcontrib><creatorcontrib>Keshavarz, Mohsen K.</creatorcontrib><creatorcontrib>Haghshenas, Meysam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatami, Ramin</au><au>Fattah-alhosseini, Arash</au><au>Mazaheri, Yousef</au><au>Keshavarz, Mohsen K.</au><au>Haghshenas, Meysam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>93</volume><issue>1-4</issue><spage>681</spage><epage>689</epage><pages>681-689</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In this paper, ambient temperature (room temperature) accumulative roll bonding (ARB) is performed on Al2024 aluminum alloys to assess grain refining phenomenon. The microstructural evaluations show reduction in the grain size from about 25 μm to about 350 nm by a factor of ∼70 upon six cycles of ARB; X-ray diffraction patterns were used to assess the increase in the dislocation density. The yield and tensile strength of the ultrafine grained Al2024 after the sixth cycle, 465 and 492 MPa, were about 650 and 186% higher than that of the as-received sample, 62 and 172 MPa, respectively. Investigating the fractured surfaces of the tensile test specimens by scanning electron microscopy showed that ARB process alters the mode of fracture substantially; fracture surface of annealed sample consists of deep equiaxed dimples which is an indication of ductile fracture. However, this changes in the ARBed specimens to shear ductile rupture with shallow and small elongated dimples.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-017-0547-z</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2017-10, Vol.93 (1-4), p.681-689 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490841037 |
source | Springer Nature |
subjects | Aluminum base alloys Ambient temperature CAE) and Design Computer-Aided Engineering (CAD Diffraction patterns Dimpling Dislocation density Ductile fracture Elongation Engineering Fracture surfaces Grain refinement Grain size Heat treating Industrial and Production Engineering Mechanical Engineering Mechanical properties Media Management Microstructure Original Article Roll bonding Room temperature Scanning electron microscopy Tensile strength Tensile tests Ultrafines |
title | Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20evolution%20and%20mechanical%20properties%20of%20ultrafine%20grained%20AA2024%20processed%20by%20accumulative%20roll%20bonding&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Khatami,%20Ramin&rft.date=2017-10-01&rft.volume=93&rft.issue=1-4&rft.spage=681&rft.epage=689&rft.pages=681-689&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-017-0547-z&rft_dat=%3Cproquest_cross%3E1950835065%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-531f8d06641dc4e39fb09d892c052af180b8e57a1d19183dedab2a5cea39c0b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262604494&rft_id=info:pmid/&rfr_iscdi=true |