Loading…

Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding

In this paper, ambient temperature (room temperature) accumulative roll bonding (ARB) is performed on Al2024 aluminum alloys to assess grain refining phenomenon. The microstructural evaluations show reduction in the grain size from about 25 μm to about 350 nm by a factor of ∼70 upon six cycles of AR...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2017-10, Vol.93 (1-4), p.681-689
Main Authors: Khatami, Ramin, Fattah-alhosseini, Arash, Mazaheri, Yousef, Keshavarz, Mohsen K., Haghshenas, Meysam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-531f8d06641dc4e39fb09d892c052af180b8e57a1d19183dedab2a5cea39c0b03
cites cdi_FETCH-LOGICAL-c372t-531f8d06641dc4e39fb09d892c052af180b8e57a1d19183dedab2a5cea39c0b03
container_end_page 689
container_issue 1-4
container_start_page 681
container_title International journal of advanced manufacturing technology
container_volume 93
creator Khatami, Ramin
Fattah-alhosseini, Arash
Mazaheri, Yousef
Keshavarz, Mohsen K.
Haghshenas, Meysam
description In this paper, ambient temperature (room temperature) accumulative roll bonding (ARB) is performed on Al2024 aluminum alloys to assess grain refining phenomenon. The microstructural evaluations show reduction in the grain size from about 25 μm to about 350 nm by a factor of ∼70 upon six cycles of ARB; X-ray diffraction patterns were used to assess the increase in the dislocation density. The yield and tensile strength of the ultrafine grained Al2024 after the sixth cycle, 465 and 492 MPa, were about 650 and 186% higher than that of the as-received sample, 62 and 172 MPa, respectively. Investigating the fractured surfaces of the tensile test specimens by scanning electron microscopy showed that ARB process alters the mode of fracture substantially; fracture surface of annealed sample consists of deep equiaxed dimples which is an indication of ductile fracture. However, this changes in the ARBed specimens to shear ductile rupture with shallow and small elongated dimples.
doi_str_mv 10.1007/s00170-017-0547-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490841037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950835065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-531f8d06641dc4e39fb09d892c052af180b8e57a1d19183dedab2a5cea39c0b03</originalsourceid><addsrcrecordid>eNp9kU1PwzAMhiMEEmPwA7hF4lxwPpsep4kvaYgLnKM0SUenrh1JO2n79aQqBy7sYkv289qWX4RuCdwTgPwhApAcshQyEDzPjmdoRjhjGQMiztEMqFQZy6W6RFcxbhItiVQztH-rbehiHwbbD8E02O-7ZujrrsWmdXjr7Zdpa5sau9DtfOhrH3FX4aHpg6nq1uN1MCk5vFhQoHzErI8xFcoDNtYO26Exfb33OHRNg8uudXW7vkYXlWmiv_nNc_T59PixfMlW78-vy8UqsyynfSYYqZQDKTlxlntWVCUUThXUgqCmIgpK5UVuiCMFUcx5Z0pqhPWGFRZKYHN0N81NZ30PPvZ60w2hTSs15QUoToDlJykqqQTOC36KIoUAxQRIkSgyUeNbY_CV3oV6a8JBE9CjVXqySqegR6v0MWnopImJbdc-_Jn8r-gH2k2XQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262604494</pqid></control><display><type>article</type><title>Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding</title><source>Springer Nature</source><creator>Khatami, Ramin ; Fattah-alhosseini, Arash ; Mazaheri, Yousef ; Keshavarz, Mohsen K. ; Haghshenas, Meysam</creator><creatorcontrib>Khatami, Ramin ; Fattah-alhosseini, Arash ; Mazaheri, Yousef ; Keshavarz, Mohsen K. ; Haghshenas, Meysam</creatorcontrib><description>In this paper, ambient temperature (room temperature) accumulative roll bonding (ARB) is performed on Al2024 aluminum alloys to assess grain refining phenomenon. The microstructural evaluations show reduction in the grain size from about 25 μm to about 350 nm by a factor of ∼70 upon six cycles of ARB; X-ray diffraction patterns were used to assess the increase in the dislocation density. The yield and tensile strength of the ultrafine grained Al2024 after the sixth cycle, 465 and 492 MPa, were about 650 and 186% higher than that of the as-received sample, 62 and 172 MPa, respectively. Investigating the fractured surfaces of the tensile test specimens by scanning electron microscopy showed that ARB process alters the mode of fracture substantially; fracture surface of annealed sample consists of deep equiaxed dimples which is an indication of ductile fracture. However, this changes in the ARBed specimens to shear ductile rupture with shallow and small elongated dimples.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-017-0547-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aluminum base alloys ; Ambient temperature ; CAE) and Design ; Computer-Aided Engineering (CAD ; Diffraction patterns ; Dimpling ; Dislocation density ; Ductile fracture ; Elongation ; Engineering ; Fracture surfaces ; Grain refinement ; Grain size ; Heat treating ; Industrial and Production Engineering ; Mechanical Engineering ; Mechanical properties ; Media Management ; Microstructure ; Original Article ; Roll bonding ; Room temperature ; Scanning electron microscopy ; Tensile strength ; Tensile tests ; Ultrafines</subject><ispartof>International journal of advanced manufacturing technology, 2017-10, Vol.93 (1-4), p.681-689</ispartof><rights>Springer-Verlag London 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Springer-Verlag London 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-531f8d06641dc4e39fb09d892c052af180b8e57a1d19183dedab2a5cea39c0b03</citedby><cites>FETCH-LOGICAL-c372t-531f8d06641dc4e39fb09d892c052af180b8e57a1d19183dedab2a5cea39c0b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khatami, Ramin</creatorcontrib><creatorcontrib>Fattah-alhosseini, Arash</creatorcontrib><creatorcontrib>Mazaheri, Yousef</creatorcontrib><creatorcontrib>Keshavarz, Mohsen K.</creatorcontrib><creatorcontrib>Haghshenas, Meysam</creatorcontrib><title>Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In this paper, ambient temperature (room temperature) accumulative roll bonding (ARB) is performed on Al2024 aluminum alloys to assess grain refining phenomenon. The microstructural evaluations show reduction in the grain size from about 25 μm to about 350 nm by a factor of ∼70 upon six cycles of ARB; X-ray diffraction patterns were used to assess the increase in the dislocation density. The yield and tensile strength of the ultrafine grained Al2024 after the sixth cycle, 465 and 492 MPa, were about 650 and 186% higher than that of the as-received sample, 62 and 172 MPa, respectively. Investigating the fractured surfaces of the tensile test specimens by scanning electron microscopy showed that ARB process alters the mode of fracture substantially; fracture surface of annealed sample consists of deep equiaxed dimples which is an indication of ductile fracture. However, this changes in the ARBed specimens to shear ductile rupture with shallow and small elongated dimples.</description><subject>Aluminum base alloys</subject><subject>Ambient temperature</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Diffraction patterns</subject><subject>Dimpling</subject><subject>Dislocation density</subject><subject>Ductile fracture</subject><subject>Elongation</subject><subject>Engineering</subject><subject>Fracture surfaces</subject><subject>Grain refinement</subject><subject>Grain size</subject><subject>Heat treating</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Microstructure</subject><subject>Original Article</subject><subject>Roll bonding</subject><subject>Room temperature</subject><subject>Scanning electron microscopy</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Ultrafines</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PwzAMhiMEEmPwA7hF4lxwPpsep4kvaYgLnKM0SUenrh1JO2n79aQqBy7sYkv289qWX4RuCdwTgPwhApAcshQyEDzPjmdoRjhjGQMiztEMqFQZy6W6RFcxbhItiVQztH-rbehiHwbbD8E02O-7ZujrrsWmdXjr7Zdpa5sau9DtfOhrH3FX4aHpg6nq1uN1MCk5vFhQoHzErI8xFcoDNtYO26Exfb33OHRNg8uudXW7vkYXlWmiv_nNc_T59PixfMlW78-vy8UqsyynfSYYqZQDKTlxlntWVCUUThXUgqCmIgpK5UVuiCMFUcx5Z0pqhPWGFRZKYHN0N81NZ30PPvZ60w2hTSs15QUoToDlJykqqQTOC36KIoUAxQRIkSgyUeNbY_CV3oV6a8JBE9CjVXqySqegR6v0MWnopImJbdc-_Jn8r-gH2k2XQQ</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Khatami, Ramin</creator><creator>Fattah-alhosseini, Arash</creator><creator>Mazaheri, Yousef</creator><creator>Keshavarz, Mohsen K.</creator><creator>Haghshenas, Meysam</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171001</creationdate><title>Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding</title><author>Khatami, Ramin ; Fattah-alhosseini, Arash ; Mazaheri, Yousef ; Keshavarz, Mohsen K. ; Haghshenas, Meysam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-531f8d06641dc4e39fb09d892c052af180b8e57a1d19183dedab2a5cea39c0b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum base alloys</topic><topic>Ambient temperature</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Diffraction patterns</topic><topic>Dimpling</topic><topic>Dislocation density</topic><topic>Ductile fracture</topic><topic>Elongation</topic><topic>Engineering</topic><topic>Fracture surfaces</topic><topic>Grain refinement</topic><topic>Grain size</topic><topic>Heat treating</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Microstructure</topic><topic>Original Article</topic><topic>Roll bonding</topic><topic>Room temperature</topic><topic>Scanning electron microscopy</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatami, Ramin</creatorcontrib><creatorcontrib>Fattah-alhosseini, Arash</creatorcontrib><creatorcontrib>Mazaheri, Yousef</creatorcontrib><creatorcontrib>Keshavarz, Mohsen K.</creatorcontrib><creatorcontrib>Haghshenas, Meysam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatami, Ramin</au><au>Fattah-alhosseini, Arash</au><au>Mazaheri, Yousef</au><au>Keshavarz, Mohsen K.</au><au>Haghshenas, Meysam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>93</volume><issue>1-4</issue><spage>681</spage><epage>689</epage><pages>681-689</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In this paper, ambient temperature (room temperature) accumulative roll bonding (ARB) is performed on Al2024 aluminum alloys to assess grain refining phenomenon. The microstructural evaluations show reduction in the grain size from about 25 μm to about 350 nm by a factor of ∼70 upon six cycles of ARB; X-ray diffraction patterns were used to assess the increase in the dislocation density. The yield and tensile strength of the ultrafine grained Al2024 after the sixth cycle, 465 and 492 MPa, were about 650 and 186% higher than that of the as-received sample, 62 and 172 MPa, respectively. Investigating the fractured surfaces of the tensile test specimens by scanning electron microscopy showed that ARB process alters the mode of fracture substantially; fracture surface of annealed sample consists of deep equiaxed dimples which is an indication of ductile fracture. However, this changes in the ARBed specimens to shear ductile rupture with shallow and small elongated dimples.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-017-0547-z</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2017-10, Vol.93 (1-4), p.681-689
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490841037
source Springer Nature
subjects Aluminum base alloys
Ambient temperature
CAE) and Design
Computer-Aided Engineering (CAD
Diffraction patterns
Dimpling
Dislocation density
Ductile fracture
Elongation
Engineering
Fracture surfaces
Grain refinement
Grain size
Heat treating
Industrial and Production Engineering
Mechanical Engineering
Mechanical properties
Media Management
Microstructure
Original Article
Roll bonding
Room temperature
Scanning electron microscopy
Tensile strength
Tensile tests
Ultrafines
title Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20evolution%20and%20mechanical%20properties%20of%20ultrafine%20grained%20AA2024%20processed%20by%20accumulative%20roll%20bonding&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Khatami,%20Ramin&rft.date=2017-10-01&rft.volume=93&rft.issue=1-4&rft.spage=681&rft.epage=689&rft.pages=681-689&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-017-0547-z&rft_dat=%3Cproquest_cross%3E1950835065%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-531f8d06641dc4e39fb09d892c052af180b8e57a1d19183dedab2a5cea39c0b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262604494&rft_id=info:pmid/&rfr_iscdi=true