Loading…

Modeling of surface topography based on cutting vibration in ball-end milling of thin-walled parts

Because of the low rigidity of thin-walled parts, the cutting vibration is commonly encountered and has a vital influence on machined surface quality. Theoretical simulation of surface topography is one of the main methods to evaluate and control surface quality in practice. In this paper, a simulat...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2019-04, Vol.101 (5-8), p.1837-1854
Main Authors: Wang, Zhenhua, Wang, Boxiang, Yuan, Juntang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Because of the low rigidity of thin-walled parts, the cutting vibration is commonly encountered and has a vital influence on machined surface quality. Theoretical simulation of surface topography is one of the main methods to evaluate and control surface quality in practice. In this paper, a simulation model of surface topography is developed based on cutting edge motion model that incorporates the dynamics of thin-walled parts milling system. The theoretical model used to describe the trajectory of cutting edge takes tool vibration and workpiece vibration into account. Then, the influence of system vibration on surface topography is investigated. Particularly, a new method is proposed in this paper to predict the texture interval, texture distribution, and residual height for different milling areas by identifying the dynamic characteristics of thin-walled parts. In addition, the validity of surface topography model is conducted by experiment. The results show that the simulated topography is consistent with the experimental topography, and the model is proved to be able to predict roughness accurately.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-018-3095-2