Loading…
Finite element simulation and experimental investigation on cutting mechanism in vibration-assisted micro-milling
In vibration-assisted milling, vibrations are applied in feed and/or cross-feed directions during micro-milling process, and instantaneous cutting thickness can be changed significantly. As a result, its cutting mechanics also change dramatically. This paper investigates the underlying cutting mecha...
Saved in:
Published in: | International journal of advanced manufacturing technology 2019-12, Vol.105 (11), p.4539-4549 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In vibration-assisted milling, vibrations are applied in feed and/or cross-feed directions during micro-milling process, and instantaneous cutting thickness can be changed significantly. As a result, its cutting mechanics also change dramatically. This paper investigates the underlying cutting mechanism of vibration-assisted micro-milling by using finite element (FE) simulations and experiments. A finite element model of vibration-assisted micro-milling process is established for magnesium alloys machining with the Johnson-Cook material model. The vibration-assisted micro-milling is investigated in terms of size effect and material removal mechanism. It is found that vibration frequency has a significant influence on the machining mechanism, e.g. suppression of burr formation and reduction of cutting forces and tool wear. The FE simulation results are compared with the conventional micro-milling and verified by the experimental results. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-019-03402-0 |