Loading…
Mechanical characterization and optimization of delamination factor in drilling bidirectional jute fibre-reinforced polymer biocomposites
In this comprehensive investigation, we evaluate the mechanical properties and the effect of drilling parameters (spindle speed, 355, 710 and 1400 rev/min; feed rate, 50, 108 and 190 mm/min; and the tool diameter, 5, 7 and 10 mm) as a function of the cutting process on the delamination factor when d...
Saved in:
Published in: | International journal of advanced manufacturing technology 2020-12, Vol.111 (7-8), p.2073-2094 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this comprehensive investigation, we evaluate the mechanical properties and the effect of drilling parameters (spindle speed, 355, 710 and 1400 rev/min; feed rate, 50, 108 and 190 mm/min; and the tool diameter, 5, 7 and 10 mm) as a function of the cutting process on the delamination factor when drilling jute fabrics reinforced epoxy matrix biocomposites. The study is carried out using different drill geometries and material (HSS_TiN, HSS and brad and spur drill bits). The design of experiment is developed by the application analysis of variance (ANOVA). The response surface methodology (RSM) and artificial neural networks (ANN) are applied to validate the results obtained during the experiment and to predict the behaviour of the structure under any cutting condition. Result analysis showed the superiority of the ANN model over the RSM model, while the feed rate had a significant contribution on spindle speed and diameter. The optimum conditions obtained for the
F
d
factor were a feed rate of 51 mm/min, a spindle speed of 1160 rev/min and a drilling diameter of 5 mm. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-020-06217-6 |