Loading…

Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel

Laser cladding is a novel additive manufacturing and surface treatment process associated with many interactive process parameters. Using the response surface method with a central composite design, a structured design of experiments approach was chosen to examine the influence of selected process p...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2018, Vol.94 (1-4), p.397-413
Main Authors: Alam, Mohammad K., Urbanic, Ruth Jill, Nazemi, Navid, Edrisy, Afsaneh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-41d7927a01fab919f705c8ca048cefc94a194c785a726b4d11a76d9c750642b73
cites cdi_FETCH-LOGICAL-c372t-41d7927a01fab919f705c8ca048cefc94a194c785a726b4d11a76d9c750642b73
container_end_page 413
container_issue 1-4
container_start_page 397
container_title International journal of advanced manufacturing technology
container_volume 94
creator Alam, Mohammad K.
Urbanic, Ruth Jill
Nazemi, Navid
Edrisy, Afsaneh
description Laser cladding is a novel additive manufacturing and surface treatment process associated with many interactive process parameters. Using the response surface method with a central composite design, a structured design of experiments approach was chosen to examine the influence of selected process parameters on the bead geometry and hardness for single-track laser-cladded specimens using AISI 420 stainless steel powder on a AISI 1018 substrate. In the present study, robust predictive models for hardness, bead aspect ratio, and wetting angle with the substrate were determined using multiple regression analysis. The geometry and hardness relationships to the process inputs were evaluated using F-statistics from the analysis of variance and compared by utilizing perturbation plots, 3D surface mapping, and contour plots. The highly coupled non-linear relationships are evident from these analyses, but this study revealed that the laser speed has the most significant effect on the bead microhardness and the powder feed rate was found to be the most significant parameter for these bead geometry parameters. The perturbation plots confirmed this sensitivity of those process parameters. This research study gives a guideline for the selection of appropriate process parameters for the laser cladding process to achieve desired hardness and bead geometry.
doi_str_mv 10.1007/s00170-017-0898-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490866469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262157953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-41d7927a01fab919f705c8ca048cefc94a194c785a726b4d11a76d9c750642b73</originalsourceid><addsrcrecordid>eNp9kT1vFDEQhi1EpBwhPyCdJWqDx-v1R4kivqRIpAi1NWePk432dg_bQaLmj-PlKGhIMyONn2dG1svYFci3IKV9V6UEK0UvQjrvxPiC7UAPgxgkjC_ZTirjxGCNO2evan3stAHjduzXbaE0xTb9IH5YE83Tcs9xSbw9EKecKTa-Zn4sa6Ra-RELHqhRqXxd_jAPWNKyPW3SnjDx2EcYOzPVNsXK81r4jJWKiDOmRInXhtMyb1JtRPNrdpZxrnT5t1-wbx8_3F1_FjdfP325fn8j4mBVExqS9cqihIx7Dz5bOUYXUWoXKUevEbyO1o1oldnrBIDWJB_tKI1WeztcsDenvf0335-otvC4PpWlnwxKe-mM0cY_SymjYLR-HJ6jwLtBg3UGOgUnKpa11kI5HMt0wPIzgAxbbuGUW-glbLmFsTvq5NTOLvdU_tn8X-k3ocqaww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262157953</pqid></control><display><type>article</type><title>Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel</title><source>Springer Nature</source><creator>Alam, Mohammad K. ; Urbanic, Ruth Jill ; Nazemi, Navid ; Edrisy, Afsaneh</creator><creatorcontrib>Alam, Mohammad K. ; Urbanic, Ruth Jill ; Nazemi, Navid ; Edrisy, Afsaneh</creatorcontrib><description>Laser cladding is a novel additive manufacturing and surface treatment process associated with many interactive process parameters. Using the response surface method with a central composite design, a structured design of experiments approach was chosen to examine the influence of selected process parameters on the bead geometry and hardness for single-track laser-cladded specimens using AISI 420 stainless steel powder on a AISI 1018 substrate. In the present study, robust predictive models for hardness, bead aspect ratio, and wetting angle with the substrate were determined using multiple regression analysis. The geometry and hardness relationships to the process inputs were evaluated using F-statistics from the analysis of variance and compared by utilizing perturbation plots, 3D surface mapping, and contour plots. The highly coupled non-linear relationships are evident from these analyses, but this study revealed that the laser speed has the most significant effect on the bead microhardness and the powder feed rate was found to be the most significant parameter for these bead geometry parameters. The perturbation plots confirmed this sensitivity of those process parameters. This research study gives a guideline for the selection of appropriate process parameters for the laser cladding process to achieve desired hardness and bead geometry.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-017-0898-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aspect ratio ; CAE) and Design ; Computer-Aided Engineering (CAD ; Design of experiments ; Engineering ; Feed rate ; Geometry ; Hardness ; Industrial and Production Engineering ; Laser beam cladding ; Lasers ; Low carbon steels ; Mapping ; Martensitic stainless steels ; Mathematical models ; Mechanical Engineering ; Media Management ; Microhardness ; Multiple regression analysis ; Original Article ; Parameter sensitivity ; Perturbation ; Prediction models ; Process parameters ; Response surface methodology ; Stainless steel ; Stainless steels ; Substrates ; Surface treatment ; Variance analysis ; Wetting</subject><ispartof>International journal of advanced manufacturing technology, 2018, Vol.94 (1-4), p.397-413</ispartof><rights>Springer-Verlag London Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd. 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-41d7927a01fab919f705c8ca048cefc94a194c785a726b4d11a76d9c750642b73</citedby><cites>FETCH-LOGICAL-c372t-41d7927a01fab919f705c8ca048cefc94a194c785a726b4d11a76d9c750642b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alam, Mohammad K.</creatorcontrib><creatorcontrib>Urbanic, Ruth Jill</creatorcontrib><creatorcontrib>Nazemi, Navid</creatorcontrib><creatorcontrib>Edrisy, Afsaneh</creatorcontrib><title>Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Laser cladding is a novel additive manufacturing and surface treatment process associated with many interactive process parameters. Using the response surface method with a central composite design, a structured design of experiments approach was chosen to examine the influence of selected process parameters on the bead geometry and hardness for single-track laser-cladded specimens using AISI 420 stainless steel powder on a AISI 1018 substrate. In the present study, robust predictive models for hardness, bead aspect ratio, and wetting angle with the substrate were determined using multiple regression analysis. The geometry and hardness relationships to the process inputs were evaluated using F-statistics from the analysis of variance and compared by utilizing perturbation plots, 3D surface mapping, and contour plots. The highly coupled non-linear relationships are evident from these analyses, but this study revealed that the laser speed has the most significant effect on the bead microhardness and the powder feed rate was found to be the most significant parameter for these bead geometry parameters. The perturbation plots confirmed this sensitivity of those process parameters. This research study gives a guideline for the selection of appropriate process parameters for the laser cladding process to achieve desired hardness and bead geometry.</description><subject>Aspect ratio</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Design of experiments</subject><subject>Engineering</subject><subject>Feed rate</subject><subject>Geometry</subject><subject>Hardness</subject><subject>Industrial and Production Engineering</subject><subject>Laser beam cladding</subject><subject>Lasers</subject><subject>Low carbon steels</subject><subject>Mapping</subject><subject>Martensitic stainless steels</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Microhardness</subject><subject>Multiple regression analysis</subject><subject>Original Article</subject><subject>Parameter sensitivity</subject><subject>Perturbation</subject><subject>Prediction models</subject><subject>Process parameters</subject><subject>Response surface methodology</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Substrates</subject><subject>Surface treatment</subject><subject>Variance analysis</subject><subject>Wetting</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kT1vFDEQhi1EpBwhPyCdJWqDx-v1R4kivqRIpAi1NWePk432dg_bQaLmj-PlKGhIMyONn2dG1svYFci3IKV9V6UEK0UvQjrvxPiC7UAPgxgkjC_ZTirjxGCNO2evan3stAHjduzXbaE0xTb9IH5YE83Tcs9xSbw9EKecKTa-Zn4sa6Ra-RELHqhRqXxd_jAPWNKyPW3SnjDx2EcYOzPVNsXK81r4jJWKiDOmRInXhtMyb1JtRPNrdpZxrnT5t1-wbx8_3F1_FjdfP325fn8j4mBVExqS9cqihIx7Dz5bOUYXUWoXKUevEbyO1o1oldnrBIDWJB_tKI1WeztcsDenvf0335-otvC4PpWlnwxKe-mM0cY_SymjYLR-HJ6jwLtBg3UGOgUnKpa11kI5HMt0wPIzgAxbbuGUW-glbLmFsTvq5NTOLvdU_tn8X-k3ocqaww</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Alam, Mohammad K.</creator><creator>Urbanic, Ruth Jill</creator><creator>Nazemi, Navid</creator><creator>Edrisy, Afsaneh</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2018</creationdate><title>Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel</title><author>Alam, Mohammad K. ; Urbanic, Ruth Jill ; Nazemi, Navid ; Edrisy, Afsaneh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-41d7927a01fab919f705c8ca048cefc94a194c785a726b4d11a76d9c750642b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aspect ratio</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Design of experiments</topic><topic>Engineering</topic><topic>Feed rate</topic><topic>Geometry</topic><topic>Hardness</topic><topic>Industrial and Production Engineering</topic><topic>Laser beam cladding</topic><topic>Lasers</topic><topic>Low carbon steels</topic><topic>Mapping</topic><topic>Martensitic stainless steels</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Microhardness</topic><topic>Multiple regression analysis</topic><topic>Original Article</topic><topic>Parameter sensitivity</topic><topic>Perturbation</topic><topic>Prediction models</topic><topic>Process parameters</topic><topic>Response surface methodology</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Substrates</topic><topic>Surface treatment</topic><topic>Variance analysis</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Mohammad K.</creatorcontrib><creatorcontrib>Urbanic, Ruth Jill</creatorcontrib><creatorcontrib>Nazemi, Navid</creatorcontrib><creatorcontrib>Edrisy, Afsaneh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Mohammad K.</au><au>Urbanic, Ruth Jill</au><au>Nazemi, Navid</au><au>Edrisy, Afsaneh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2018</date><risdate>2018</risdate><volume>94</volume><issue>1-4</issue><spage>397</spage><epage>413</epage><pages>397-413</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Laser cladding is a novel additive manufacturing and surface treatment process associated with many interactive process parameters. Using the response surface method with a central composite design, a structured design of experiments approach was chosen to examine the influence of selected process parameters on the bead geometry and hardness for single-track laser-cladded specimens using AISI 420 stainless steel powder on a AISI 1018 substrate. In the present study, robust predictive models for hardness, bead aspect ratio, and wetting angle with the substrate were determined using multiple regression analysis. The geometry and hardness relationships to the process inputs were evaluated using F-statistics from the analysis of variance and compared by utilizing perturbation plots, 3D surface mapping, and contour plots. The highly coupled non-linear relationships are evident from these analyses, but this study revealed that the laser speed has the most significant effect on the bead microhardness and the powder feed rate was found to be the most significant parameter for these bead geometry parameters. The perturbation plots confirmed this sensitivity of those process parameters. This research study gives a guideline for the selection of appropriate process parameters for the laser cladding process to achieve desired hardness and bead geometry.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-017-0898-5</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2018, Vol.94 (1-4), p.397-413
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490866469
source Springer Nature
subjects Aspect ratio
CAE) and Design
Computer-Aided Engineering (CAD
Design of experiments
Engineering
Feed rate
Geometry
Hardness
Industrial and Production Engineering
Laser beam cladding
Lasers
Low carbon steels
Mapping
Martensitic stainless steels
Mathematical models
Mechanical Engineering
Media Management
Microhardness
Multiple regression analysis
Original Article
Parameter sensitivity
Perturbation
Prediction models
Process parameters
Response surface methodology
Stainless steel
Stainless steels
Substrates
Surface treatment
Variance analysis
Wetting
title Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20modeling%20and%20the%20effect%20of%20process%20parameters%20on%20the%20hardness%20and%20bead%20characteristics%20for%20laser-cladded%20stainless%20steel&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Alam,%20Mohammad%20K.&rft.date=2018&rft.volume=94&rft.issue=1-4&rft.spage=397&rft.epage=413&rft.pages=397-413&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-017-0898-5&rft_dat=%3Cproquest_cross%3E2262157953%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-41d7927a01fab919f705c8ca048cefc94a194c785a726b4d11a76d9c750642b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262157953&rft_id=info:pmid/&rfr_iscdi=true