Loading…
Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel
Laser cladding is a novel additive manufacturing and surface treatment process associated with many interactive process parameters. Using the response surface method with a central composite design, a structured design of experiments approach was chosen to examine the influence of selected process p...
Saved in:
Published in: | International journal of advanced manufacturing technology 2018, Vol.94 (1-4), p.397-413 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-41d7927a01fab919f705c8ca048cefc94a194c785a726b4d11a76d9c750642b73 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-41d7927a01fab919f705c8ca048cefc94a194c785a726b4d11a76d9c750642b73 |
container_end_page | 413 |
container_issue | 1-4 |
container_start_page | 397 |
container_title | International journal of advanced manufacturing technology |
container_volume | 94 |
creator | Alam, Mohammad K. Urbanic, Ruth Jill Nazemi, Navid Edrisy, Afsaneh |
description | Laser cladding is a novel additive manufacturing and surface treatment process associated with many interactive process parameters. Using the response surface method with a central composite design, a structured design of experiments approach was chosen to examine the influence of selected process parameters on the bead geometry and hardness for single-track laser-cladded specimens using AISI 420 stainless steel powder on a AISI 1018 substrate. In the present study, robust predictive models for hardness, bead aspect ratio, and wetting angle with the substrate were determined using multiple regression analysis. The geometry and hardness relationships to the process inputs were evaluated using F-statistics from the analysis of variance and compared by utilizing perturbation plots, 3D surface mapping, and contour plots. The highly coupled non-linear relationships are evident from these analyses, but this study revealed that the laser speed has the most significant effect on the bead microhardness and the powder feed rate was found to be the most significant parameter for these bead geometry parameters. The perturbation plots confirmed this sensitivity of those process parameters. This research study gives a guideline for the selection of appropriate process parameters for the laser cladding process to achieve desired hardness and bead geometry. |
doi_str_mv | 10.1007/s00170-017-0898-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490866469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262157953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-41d7927a01fab919f705c8ca048cefc94a194c785a726b4d11a76d9c750642b73</originalsourceid><addsrcrecordid>eNp9kT1vFDEQhi1EpBwhPyCdJWqDx-v1R4kivqRIpAi1NWePk432dg_bQaLmj-PlKGhIMyONn2dG1svYFci3IKV9V6UEK0UvQjrvxPiC7UAPgxgkjC_ZTirjxGCNO2evan3stAHjduzXbaE0xTb9IH5YE83Tcs9xSbw9EKecKTa-Zn4sa6Ra-RELHqhRqXxd_jAPWNKyPW3SnjDx2EcYOzPVNsXK81r4jJWKiDOmRInXhtMyb1JtRPNrdpZxrnT5t1-wbx8_3F1_FjdfP325fn8j4mBVExqS9cqihIx7Dz5bOUYXUWoXKUevEbyO1o1oldnrBIDWJB_tKI1WeztcsDenvf0335-otvC4PpWlnwxKe-mM0cY_SymjYLR-HJ6jwLtBg3UGOgUnKpa11kI5HMt0wPIzgAxbbuGUW-glbLmFsTvq5NTOLvdU_tn8X-k3ocqaww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262157953</pqid></control><display><type>article</type><title>Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel</title><source>Springer Nature</source><creator>Alam, Mohammad K. ; Urbanic, Ruth Jill ; Nazemi, Navid ; Edrisy, Afsaneh</creator><creatorcontrib>Alam, Mohammad K. ; Urbanic, Ruth Jill ; Nazemi, Navid ; Edrisy, Afsaneh</creatorcontrib><description>Laser cladding is a novel additive manufacturing and surface treatment process associated with many interactive process parameters. Using the response surface method with a central composite design, a structured design of experiments approach was chosen to examine the influence of selected process parameters on the bead geometry and hardness for single-track laser-cladded specimens using AISI 420 stainless steel powder on a AISI 1018 substrate. In the present study, robust predictive models for hardness, bead aspect ratio, and wetting angle with the substrate were determined using multiple regression analysis. The geometry and hardness relationships to the process inputs were evaluated using F-statistics from the analysis of variance and compared by utilizing perturbation plots, 3D surface mapping, and contour plots. The highly coupled non-linear relationships are evident from these analyses, but this study revealed that the laser speed has the most significant effect on the bead microhardness and the powder feed rate was found to be the most significant parameter for these bead geometry parameters. The perturbation plots confirmed this sensitivity of those process parameters. This research study gives a guideline for the selection of appropriate process parameters for the laser cladding process to achieve desired hardness and bead geometry.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-017-0898-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aspect ratio ; CAE) and Design ; Computer-Aided Engineering (CAD ; Design of experiments ; Engineering ; Feed rate ; Geometry ; Hardness ; Industrial and Production Engineering ; Laser beam cladding ; Lasers ; Low carbon steels ; Mapping ; Martensitic stainless steels ; Mathematical models ; Mechanical Engineering ; Media Management ; Microhardness ; Multiple regression analysis ; Original Article ; Parameter sensitivity ; Perturbation ; Prediction models ; Process parameters ; Response surface methodology ; Stainless steel ; Stainless steels ; Substrates ; Surface treatment ; Variance analysis ; Wetting</subject><ispartof>International journal of advanced manufacturing technology, 2018, Vol.94 (1-4), p.397-413</ispartof><rights>Springer-Verlag London Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd. 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-41d7927a01fab919f705c8ca048cefc94a194c785a726b4d11a76d9c750642b73</citedby><cites>FETCH-LOGICAL-c372t-41d7927a01fab919f705c8ca048cefc94a194c785a726b4d11a76d9c750642b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alam, Mohammad K.</creatorcontrib><creatorcontrib>Urbanic, Ruth Jill</creatorcontrib><creatorcontrib>Nazemi, Navid</creatorcontrib><creatorcontrib>Edrisy, Afsaneh</creatorcontrib><title>Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Laser cladding is a novel additive manufacturing and surface treatment process associated with many interactive process parameters. Using the response surface method with a central composite design, a structured design of experiments approach was chosen to examine the influence of selected process parameters on the bead geometry and hardness for single-track laser-cladded specimens using AISI 420 stainless steel powder on a AISI 1018 substrate. In the present study, robust predictive models for hardness, bead aspect ratio, and wetting angle with the substrate were determined using multiple regression analysis. The geometry and hardness relationships to the process inputs were evaluated using F-statistics from the analysis of variance and compared by utilizing perturbation plots, 3D surface mapping, and contour plots. The highly coupled non-linear relationships are evident from these analyses, but this study revealed that the laser speed has the most significant effect on the bead microhardness and the powder feed rate was found to be the most significant parameter for these bead geometry parameters. The perturbation plots confirmed this sensitivity of those process parameters. This research study gives a guideline for the selection of appropriate process parameters for the laser cladding process to achieve desired hardness and bead geometry.</description><subject>Aspect ratio</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Design of experiments</subject><subject>Engineering</subject><subject>Feed rate</subject><subject>Geometry</subject><subject>Hardness</subject><subject>Industrial and Production Engineering</subject><subject>Laser beam cladding</subject><subject>Lasers</subject><subject>Low carbon steels</subject><subject>Mapping</subject><subject>Martensitic stainless steels</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Microhardness</subject><subject>Multiple regression analysis</subject><subject>Original Article</subject><subject>Parameter sensitivity</subject><subject>Perturbation</subject><subject>Prediction models</subject><subject>Process parameters</subject><subject>Response surface methodology</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Substrates</subject><subject>Surface treatment</subject><subject>Variance analysis</subject><subject>Wetting</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kT1vFDEQhi1EpBwhPyCdJWqDx-v1R4kivqRIpAi1NWePk432dg_bQaLmj-PlKGhIMyONn2dG1svYFci3IKV9V6UEK0UvQjrvxPiC7UAPgxgkjC_ZTirjxGCNO2evan3stAHjduzXbaE0xTb9IH5YE83Tcs9xSbw9EKecKTa-Zn4sa6Ra-RELHqhRqXxd_jAPWNKyPW3SnjDx2EcYOzPVNsXK81r4jJWKiDOmRInXhtMyb1JtRPNrdpZxrnT5t1-wbx8_3F1_FjdfP325fn8j4mBVExqS9cqihIx7Dz5bOUYXUWoXKUevEbyO1o1oldnrBIDWJB_tKI1WeztcsDenvf0335-otvC4PpWlnwxKe-mM0cY_SymjYLR-HJ6jwLtBg3UGOgUnKpa11kI5HMt0wPIzgAxbbuGUW-glbLmFsTvq5NTOLvdU_tn8X-k3ocqaww</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Alam, Mohammad K.</creator><creator>Urbanic, Ruth Jill</creator><creator>Nazemi, Navid</creator><creator>Edrisy, Afsaneh</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2018</creationdate><title>Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel</title><author>Alam, Mohammad K. ; Urbanic, Ruth Jill ; Nazemi, Navid ; Edrisy, Afsaneh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-41d7927a01fab919f705c8ca048cefc94a194c785a726b4d11a76d9c750642b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aspect ratio</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Design of experiments</topic><topic>Engineering</topic><topic>Feed rate</topic><topic>Geometry</topic><topic>Hardness</topic><topic>Industrial and Production Engineering</topic><topic>Laser beam cladding</topic><topic>Lasers</topic><topic>Low carbon steels</topic><topic>Mapping</topic><topic>Martensitic stainless steels</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Microhardness</topic><topic>Multiple regression analysis</topic><topic>Original Article</topic><topic>Parameter sensitivity</topic><topic>Perturbation</topic><topic>Prediction models</topic><topic>Process parameters</topic><topic>Response surface methodology</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Substrates</topic><topic>Surface treatment</topic><topic>Variance analysis</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Mohammad K.</creatorcontrib><creatorcontrib>Urbanic, Ruth Jill</creatorcontrib><creatorcontrib>Nazemi, Navid</creatorcontrib><creatorcontrib>Edrisy, Afsaneh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Mohammad K.</au><au>Urbanic, Ruth Jill</au><au>Nazemi, Navid</au><au>Edrisy, Afsaneh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2018</date><risdate>2018</risdate><volume>94</volume><issue>1-4</issue><spage>397</spage><epage>413</epage><pages>397-413</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Laser cladding is a novel additive manufacturing and surface treatment process associated with many interactive process parameters. Using the response surface method with a central composite design, a structured design of experiments approach was chosen to examine the influence of selected process parameters on the bead geometry and hardness for single-track laser-cladded specimens using AISI 420 stainless steel powder on a AISI 1018 substrate. In the present study, robust predictive models for hardness, bead aspect ratio, and wetting angle with the substrate were determined using multiple regression analysis. The geometry and hardness relationships to the process inputs were evaluated using F-statistics from the analysis of variance and compared by utilizing perturbation plots, 3D surface mapping, and contour plots. The highly coupled non-linear relationships are evident from these analyses, but this study revealed that the laser speed has the most significant effect on the bead microhardness and the powder feed rate was found to be the most significant parameter for these bead geometry parameters. The perturbation plots confirmed this sensitivity of those process parameters. This research study gives a guideline for the selection of appropriate process parameters for the laser cladding process to achieve desired hardness and bead geometry.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-017-0898-5</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2018, Vol.94 (1-4), p.397-413 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490866469 |
source | Springer Nature |
subjects | Aspect ratio CAE) and Design Computer-Aided Engineering (CAD Design of experiments Engineering Feed rate Geometry Hardness Industrial and Production Engineering Laser beam cladding Lasers Low carbon steels Mapping Martensitic stainless steels Mathematical models Mechanical Engineering Media Management Microhardness Multiple regression analysis Original Article Parameter sensitivity Perturbation Prediction models Process parameters Response surface methodology Stainless steel Stainless steels Substrates Surface treatment Variance analysis Wetting |
title | Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20modeling%20and%20the%20effect%20of%20process%20parameters%20on%20the%20hardness%20and%20bead%20characteristics%20for%20laser-cladded%20stainless%20steel&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Alam,%20Mohammad%20K.&rft.date=2018&rft.volume=94&rft.issue=1-4&rft.spage=397&rft.epage=413&rft.pages=397-413&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-017-0898-5&rft_dat=%3Cproquest_cross%3E2262157953%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-41d7927a01fab919f705c8ca048cefc94a194c785a726b4d11a76d9c750642b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262157953&rft_id=info:pmid/&rfr_iscdi=true |