Loading…

Design and implementation of hybrid force/position control for robot automation grinding aviation blade based on fuzzy PID

The hybrid force/position control base on fuzzy proportional-integral-derivative (PID) is proposed to improve the quality of robotic automatic grinding aviation blades. First, the perception for the contact force/torque is discussed. A multi-source parameters gravity compensation matrix is establish...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2020-03, Vol.107 (3-4), p.1741-1754
Main Authors: Zhang, Hongyao, Li, Lun, Zhao, Jibin, Zhao, Jingchuan, Liu, Sujie, Wu, Jiajun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-c3d4167aaec41f46ab6fea2f46b9123e21348f68c543817821df8145e09719b43
cites cdi_FETCH-LOGICAL-c347t-c3d4167aaec41f46ab6fea2f46b9123e21348f68c543817821df8145e09719b43
container_end_page 1754
container_issue 3-4
container_start_page 1741
container_title International journal of advanced manufacturing technology
container_volume 107
creator Zhang, Hongyao
Li, Lun
Zhao, Jibin
Zhao, Jingchuan
Liu, Sujie
Wu, Jiajun
description The hybrid force/position control base on fuzzy proportional-integral-derivative (PID) is proposed to improve the quality of robotic automatic grinding aviation blades. First, the perception for the contact force/torque is discussed. A multi-source parameters gravity compensation matrix is established to identify the parameters through matrix reorganization. The contact force/torque is perceived according to the gravity compensation result. Then, the hybrid force/position control base on fuzzy PID is designed to realize active force control. Nevertheless, the sharp edge phenomenon occurs although the force control algorithm, which seriously affects the grinding quality of blades. Finally, the fusion control of force and torque is proposed to weaken the sharp edge phenomenon. The experiment proves that the introduction of torque control avoids effectively the sharp edge phenomenon. Meanwhile, comparing the proposed control algorithm with the traditional PID control, the results show that the proposed hybrid force/position control based on fuzzy PID can ensure the stability of the contact force and improve the quality of the aviation blades.
doi_str_mv 10.1007/s00170-020-05061-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490866869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490866869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c3d4167aaec41f46ab6fea2f46b9123e21348f68c543817821df8145e09719b43</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EEqXwA6wssQ71q46zRC2PSpVgAWvLSezgKrGDnSKlX49LkNh1MZ7x-NwZyReAW4zuMUL5IiKEc5QhkmKJOM7GMzDDjNKMIrw8BzNEuMhozsUluIpxl3COuZiBw1pH2zioXA1t17e6025Qg_UOegM_xzLYGhofKr3ofbS_D5V3Q_DtsQ2DL_0A1X7w3aRqgnW1dQ1U33bqlK2qNSxV1DVMV7M_HEb4tllfgwuj2qhv_vIcfDw9vq9esu3r82b1sM0qyvIhnTXDPFdKVwwbxlXJjVYkVWWBCdUEUyYMF9WSUYFzQXBtBGZLjYocFyWjc3A3ze2D_9rrOMid3weXVkrCCiQ4F7w4SVGRFyT9Kk0Umagq-BiDNrIPtlNhlBjJoxNyckImJ-SvE3JMIjqJYoJdo8P_6BOqH2uCjLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387920613</pqid></control><display><type>article</type><title>Design and implementation of hybrid force/position control for robot automation grinding aviation blade based on fuzzy PID</title><source>Springer Link</source><creator>Zhang, Hongyao ; Li, Lun ; Zhao, Jibin ; Zhao, Jingchuan ; Liu, Sujie ; Wu, Jiajun</creator><creatorcontrib>Zhang, Hongyao ; Li, Lun ; Zhao, Jibin ; Zhao, Jingchuan ; Liu, Sujie ; Wu, Jiajun</creatorcontrib><description>The hybrid force/position control base on fuzzy proportional-integral-derivative (PID) is proposed to improve the quality of robotic automatic grinding aviation blades. First, the perception for the contact force/torque is discussed. A multi-source parameters gravity compensation matrix is established to identify the parameters through matrix reorganization. The contact force/torque is perceived according to the gravity compensation result. Then, the hybrid force/position control base on fuzzy PID is designed to realize active force control. Nevertheless, the sharp edge phenomenon occurs although the force control algorithm, which seriously affects the grinding quality of blades. Finally, the fusion control of force and torque is proposed to weaken the sharp edge phenomenon. The experiment proves that the introduction of torque control avoids effectively the sharp edge phenomenon. Meanwhile, comparing the proposed control algorithm with the traditional PID control, the results show that the proposed hybrid force/position control based on fuzzy PID can ensure the stability of the contact force and improve the quality of the aviation blades.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-05061-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Active control ; Algorithms ; Aviation ; Blades ; CAE) and Design ; Compensation ; Computer-Aided Engineering (CAD ; Contact force ; Control algorithms ; Control stability ; Control theory ; Engineering ; Fuzzy control ; Gravitation ; Grinding ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Original Article ; Parameter identification ; Proportional integral derivative ; Robot control ; Torque</subject><ispartof>International journal of advanced manufacturing technology, 2020-03, Vol.107 (3-4), p.1741-1754</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-c3d4167aaec41f46ab6fea2f46b9123e21348f68c543817821df8145e09719b43</citedby><cites>FETCH-LOGICAL-c347t-c3d4167aaec41f46ab6fea2f46b9123e21348f68c543817821df8145e09719b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Hongyao</creatorcontrib><creatorcontrib>Li, Lun</creatorcontrib><creatorcontrib>Zhao, Jibin</creatorcontrib><creatorcontrib>Zhao, Jingchuan</creatorcontrib><creatorcontrib>Liu, Sujie</creatorcontrib><creatorcontrib>Wu, Jiajun</creatorcontrib><title>Design and implementation of hybrid force/position control for robot automation grinding aviation blade based on fuzzy PID</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The hybrid force/position control base on fuzzy proportional-integral-derivative (PID) is proposed to improve the quality of robotic automatic grinding aviation blades. First, the perception for the contact force/torque is discussed. A multi-source parameters gravity compensation matrix is established to identify the parameters through matrix reorganization. The contact force/torque is perceived according to the gravity compensation result. Then, the hybrid force/position control base on fuzzy PID is designed to realize active force control. Nevertheless, the sharp edge phenomenon occurs although the force control algorithm, which seriously affects the grinding quality of blades. Finally, the fusion control of force and torque is proposed to weaken the sharp edge phenomenon. The experiment proves that the introduction of torque control avoids effectively the sharp edge phenomenon. Meanwhile, comparing the proposed control algorithm with the traditional PID control, the results show that the proposed hybrid force/position control based on fuzzy PID can ensure the stability of the contact force and improve the quality of the aviation blades.</description><subject>Active control</subject><subject>Algorithms</subject><subject>Aviation</subject><subject>Blades</subject><subject>CAE) and Design</subject><subject>Compensation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Contact force</subject><subject>Control algorithms</subject><subject>Control stability</subject><subject>Control theory</subject><subject>Engineering</subject><subject>Fuzzy control</subject><subject>Gravitation</subject><subject>Grinding</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Parameter identification</subject><subject>Proportional integral derivative</subject><subject>Robot control</subject><subject>Torque</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctOwzAQRS0EEqXwA6wssQ71q46zRC2PSpVgAWvLSezgKrGDnSKlX49LkNh1MZ7x-NwZyReAW4zuMUL5IiKEc5QhkmKJOM7GMzDDjNKMIrw8BzNEuMhozsUluIpxl3COuZiBw1pH2zioXA1t17e6025Qg_UOegM_xzLYGhofKr3ofbS_D5V3Q_DtsQ2DL_0A1X7w3aRqgnW1dQ1U33bqlK2qNSxV1DVMV7M_HEb4tllfgwuj2qhv_vIcfDw9vq9esu3r82b1sM0qyvIhnTXDPFdKVwwbxlXJjVYkVWWBCdUEUyYMF9WSUYFzQXBtBGZLjYocFyWjc3A3ze2D_9rrOMid3weXVkrCCiQ4F7w4SVGRFyT9Kk0Umagq-BiDNrIPtlNhlBjJoxNyckImJ-SvE3JMIjqJYoJdo8P_6BOqH2uCjLY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Zhang, Hongyao</creator><creator>Li, Lun</creator><creator>Zhao, Jibin</creator><creator>Zhao, Jingchuan</creator><creator>Liu, Sujie</creator><creator>Wu, Jiajun</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200301</creationdate><title>Design and implementation of hybrid force/position control for robot automation grinding aviation blade based on fuzzy PID</title><author>Zhang, Hongyao ; Li, Lun ; Zhao, Jibin ; Zhao, Jingchuan ; Liu, Sujie ; Wu, Jiajun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c3d4167aaec41f46ab6fea2f46b9123e21348f68c543817821df8145e09719b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active control</topic><topic>Algorithms</topic><topic>Aviation</topic><topic>Blades</topic><topic>CAE) and Design</topic><topic>Compensation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Contact force</topic><topic>Control algorithms</topic><topic>Control stability</topic><topic>Control theory</topic><topic>Engineering</topic><topic>Fuzzy control</topic><topic>Gravitation</topic><topic>Grinding</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Parameter identification</topic><topic>Proportional integral derivative</topic><topic>Robot control</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongyao</creatorcontrib><creatorcontrib>Li, Lun</creatorcontrib><creatorcontrib>Zhao, Jibin</creatorcontrib><creatorcontrib>Zhao, Jingchuan</creatorcontrib><creatorcontrib>Liu, Sujie</creatorcontrib><creatorcontrib>Wu, Jiajun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongyao</au><au>Li, Lun</au><au>Zhao, Jibin</au><au>Zhao, Jingchuan</au><au>Liu, Sujie</au><au>Wu, Jiajun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and implementation of hybrid force/position control for robot automation grinding aviation blade based on fuzzy PID</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>107</volume><issue>3-4</issue><spage>1741</spage><epage>1754</epage><pages>1741-1754</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The hybrid force/position control base on fuzzy proportional-integral-derivative (PID) is proposed to improve the quality of robotic automatic grinding aviation blades. First, the perception for the contact force/torque is discussed. A multi-source parameters gravity compensation matrix is established to identify the parameters through matrix reorganization. The contact force/torque is perceived according to the gravity compensation result. Then, the hybrid force/position control base on fuzzy PID is designed to realize active force control. Nevertheless, the sharp edge phenomenon occurs although the force control algorithm, which seriously affects the grinding quality of blades. Finally, the fusion control of force and torque is proposed to weaken the sharp edge phenomenon. The experiment proves that the introduction of torque control avoids effectively the sharp edge phenomenon. Meanwhile, comparing the proposed control algorithm with the traditional PID control, the results show that the proposed hybrid force/position control based on fuzzy PID can ensure the stability of the contact force and improve the quality of the aviation blades.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-05061-y</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2020-03, Vol.107 (3-4), p.1741-1754
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490866869
source Springer Link
subjects Active control
Algorithms
Aviation
Blades
CAE) and Design
Compensation
Computer-Aided Engineering (CAD
Contact force
Control algorithms
Control stability
Control theory
Engineering
Fuzzy control
Gravitation
Grinding
Industrial and Production Engineering
Mechanical Engineering
Media Management
Original Article
Parameter identification
Proportional integral derivative
Robot control
Torque
title Design and implementation of hybrid force/position control for robot automation grinding aviation blade based on fuzzy PID
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20implementation%20of%20hybrid%20force/position%20control%20for%20robot%20automation%20grinding%20aviation%20blade%20based%20on%20fuzzy%20PID&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Zhang,%20Hongyao&rft.date=2020-03-01&rft.volume=107&rft.issue=3-4&rft.spage=1741&rft.epage=1754&rft.pages=1741-1754&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-05061-y&rft_dat=%3Cproquest_cross%3E2490866869%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-c3d4167aaec41f46ab6fea2f46b9123e21348f68c543817821df8145e09719b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387920613&rft_id=info:pmid/&rfr_iscdi=true