Loading…
Design and implementation of hybrid force/position control for robot automation grinding aviation blade based on fuzzy PID
The hybrid force/position control base on fuzzy proportional-integral-derivative (PID) is proposed to improve the quality of robotic automatic grinding aviation blades. First, the perception for the contact force/torque is discussed. A multi-source parameters gravity compensation matrix is establish...
Saved in:
Published in: | International journal of advanced manufacturing technology 2020-03, Vol.107 (3-4), p.1741-1754 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-c3d4167aaec41f46ab6fea2f46b9123e21348f68c543817821df8145e09719b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-c3d4167aaec41f46ab6fea2f46b9123e21348f68c543817821df8145e09719b43 |
container_end_page | 1754 |
container_issue | 3-4 |
container_start_page | 1741 |
container_title | International journal of advanced manufacturing technology |
container_volume | 107 |
creator | Zhang, Hongyao Li, Lun Zhao, Jibin Zhao, Jingchuan Liu, Sujie Wu, Jiajun |
description | The hybrid force/position control base on fuzzy proportional-integral-derivative (PID) is proposed to improve the quality of robotic automatic grinding aviation blades. First, the perception for the contact force/torque is discussed. A multi-source parameters gravity compensation matrix is established to identify the parameters through matrix reorganization. The contact force/torque is perceived according to the gravity compensation result. Then, the hybrid force/position control base on fuzzy PID is designed to realize active force control. Nevertheless, the sharp edge phenomenon occurs although the force control algorithm, which seriously affects the grinding quality of blades. Finally, the fusion control of force and torque is proposed to weaken the sharp edge phenomenon. The experiment proves that the introduction of torque control avoids effectively the sharp edge phenomenon. Meanwhile, comparing the proposed control algorithm with the traditional PID control, the results show that the proposed hybrid force/position control based on fuzzy PID can ensure the stability of the contact force and improve the quality of the aviation blades. |
doi_str_mv | 10.1007/s00170-020-05061-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490866869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490866869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c3d4167aaec41f46ab6fea2f46b9123e21348f68c543817821df8145e09719b43</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EEqXwA6wssQ71q46zRC2PSpVgAWvLSezgKrGDnSKlX49LkNh1MZ7x-NwZyReAW4zuMUL5IiKEc5QhkmKJOM7GMzDDjNKMIrw8BzNEuMhozsUluIpxl3COuZiBw1pH2zioXA1t17e6025Qg_UOegM_xzLYGhofKr3ofbS_D5V3Q_DtsQ2DL_0A1X7w3aRqgnW1dQ1U33bqlK2qNSxV1DVMV7M_HEb4tllfgwuj2qhv_vIcfDw9vq9esu3r82b1sM0qyvIhnTXDPFdKVwwbxlXJjVYkVWWBCdUEUyYMF9WSUYFzQXBtBGZLjYocFyWjc3A3ze2D_9rrOMid3weXVkrCCiQ4F7w4SVGRFyT9Kk0Umagq-BiDNrIPtlNhlBjJoxNyckImJ-SvE3JMIjqJYoJdo8P_6BOqH2uCjLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387920613</pqid></control><display><type>article</type><title>Design and implementation of hybrid force/position control for robot automation grinding aviation blade based on fuzzy PID</title><source>Springer Link</source><creator>Zhang, Hongyao ; Li, Lun ; Zhao, Jibin ; Zhao, Jingchuan ; Liu, Sujie ; Wu, Jiajun</creator><creatorcontrib>Zhang, Hongyao ; Li, Lun ; Zhao, Jibin ; Zhao, Jingchuan ; Liu, Sujie ; Wu, Jiajun</creatorcontrib><description>The hybrid force/position control base on fuzzy proportional-integral-derivative (PID) is proposed to improve the quality of robotic automatic grinding aviation blades. First, the perception for the contact force/torque is discussed. A multi-source parameters gravity compensation matrix is established to identify the parameters through matrix reorganization. The contact force/torque is perceived according to the gravity compensation result. Then, the hybrid force/position control base on fuzzy PID is designed to realize active force control. Nevertheless, the sharp edge phenomenon occurs although the force control algorithm, which seriously affects the grinding quality of blades. Finally, the fusion control of force and torque is proposed to weaken the sharp edge phenomenon. The experiment proves that the introduction of torque control avoids effectively the sharp edge phenomenon. Meanwhile, comparing the proposed control algorithm with the traditional PID control, the results show that the proposed hybrid force/position control based on fuzzy PID can ensure the stability of the contact force and improve the quality of the aviation blades.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-05061-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Active control ; Algorithms ; Aviation ; Blades ; CAE) and Design ; Compensation ; Computer-Aided Engineering (CAD ; Contact force ; Control algorithms ; Control stability ; Control theory ; Engineering ; Fuzzy control ; Gravitation ; Grinding ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Original Article ; Parameter identification ; Proportional integral derivative ; Robot control ; Torque</subject><ispartof>International journal of advanced manufacturing technology, 2020-03, Vol.107 (3-4), p.1741-1754</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-c3d4167aaec41f46ab6fea2f46b9123e21348f68c543817821df8145e09719b43</citedby><cites>FETCH-LOGICAL-c347t-c3d4167aaec41f46ab6fea2f46b9123e21348f68c543817821df8145e09719b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Hongyao</creatorcontrib><creatorcontrib>Li, Lun</creatorcontrib><creatorcontrib>Zhao, Jibin</creatorcontrib><creatorcontrib>Zhao, Jingchuan</creatorcontrib><creatorcontrib>Liu, Sujie</creatorcontrib><creatorcontrib>Wu, Jiajun</creatorcontrib><title>Design and implementation of hybrid force/position control for robot automation grinding aviation blade based on fuzzy PID</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The hybrid force/position control base on fuzzy proportional-integral-derivative (PID) is proposed to improve the quality of robotic automatic grinding aviation blades. First, the perception for the contact force/torque is discussed. A multi-source parameters gravity compensation matrix is established to identify the parameters through matrix reorganization. The contact force/torque is perceived according to the gravity compensation result. Then, the hybrid force/position control base on fuzzy PID is designed to realize active force control. Nevertheless, the sharp edge phenomenon occurs although the force control algorithm, which seriously affects the grinding quality of blades. Finally, the fusion control of force and torque is proposed to weaken the sharp edge phenomenon. The experiment proves that the introduction of torque control avoids effectively the sharp edge phenomenon. Meanwhile, comparing the proposed control algorithm with the traditional PID control, the results show that the proposed hybrid force/position control based on fuzzy PID can ensure the stability of the contact force and improve the quality of the aviation blades.</description><subject>Active control</subject><subject>Algorithms</subject><subject>Aviation</subject><subject>Blades</subject><subject>CAE) and Design</subject><subject>Compensation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Contact force</subject><subject>Control algorithms</subject><subject>Control stability</subject><subject>Control theory</subject><subject>Engineering</subject><subject>Fuzzy control</subject><subject>Gravitation</subject><subject>Grinding</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Parameter identification</subject><subject>Proportional integral derivative</subject><subject>Robot control</subject><subject>Torque</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctOwzAQRS0EEqXwA6wssQ71q46zRC2PSpVgAWvLSezgKrGDnSKlX49LkNh1MZ7x-NwZyReAW4zuMUL5IiKEc5QhkmKJOM7GMzDDjNKMIrw8BzNEuMhozsUluIpxl3COuZiBw1pH2zioXA1t17e6025Qg_UOegM_xzLYGhofKr3ofbS_D5V3Q_DtsQ2DL_0A1X7w3aRqgnW1dQ1U33bqlK2qNSxV1DVMV7M_HEb4tllfgwuj2qhv_vIcfDw9vq9esu3r82b1sM0qyvIhnTXDPFdKVwwbxlXJjVYkVWWBCdUEUyYMF9WSUYFzQXBtBGZLjYocFyWjc3A3ze2D_9rrOMid3weXVkrCCiQ4F7w4SVGRFyT9Kk0Umagq-BiDNrIPtlNhlBjJoxNyckImJ-SvE3JMIjqJYoJdo8P_6BOqH2uCjLY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Zhang, Hongyao</creator><creator>Li, Lun</creator><creator>Zhao, Jibin</creator><creator>Zhao, Jingchuan</creator><creator>Liu, Sujie</creator><creator>Wu, Jiajun</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200301</creationdate><title>Design and implementation of hybrid force/position control for robot automation grinding aviation blade based on fuzzy PID</title><author>Zhang, Hongyao ; Li, Lun ; Zhao, Jibin ; Zhao, Jingchuan ; Liu, Sujie ; Wu, Jiajun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c3d4167aaec41f46ab6fea2f46b9123e21348f68c543817821df8145e09719b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active control</topic><topic>Algorithms</topic><topic>Aviation</topic><topic>Blades</topic><topic>CAE) and Design</topic><topic>Compensation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Contact force</topic><topic>Control algorithms</topic><topic>Control stability</topic><topic>Control theory</topic><topic>Engineering</topic><topic>Fuzzy control</topic><topic>Gravitation</topic><topic>Grinding</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Parameter identification</topic><topic>Proportional integral derivative</topic><topic>Robot control</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongyao</creatorcontrib><creatorcontrib>Li, Lun</creatorcontrib><creatorcontrib>Zhao, Jibin</creatorcontrib><creatorcontrib>Zhao, Jingchuan</creatorcontrib><creatorcontrib>Liu, Sujie</creatorcontrib><creatorcontrib>Wu, Jiajun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongyao</au><au>Li, Lun</au><au>Zhao, Jibin</au><au>Zhao, Jingchuan</au><au>Liu, Sujie</au><au>Wu, Jiajun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and implementation of hybrid force/position control for robot automation grinding aviation blade based on fuzzy PID</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>107</volume><issue>3-4</issue><spage>1741</spage><epage>1754</epage><pages>1741-1754</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The hybrid force/position control base on fuzzy proportional-integral-derivative (PID) is proposed to improve the quality of robotic automatic grinding aviation blades. First, the perception for the contact force/torque is discussed. A multi-source parameters gravity compensation matrix is established to identify the parameters through matrix reorganization. The contact force/torque is perceived according to the gravity compensation result. Then, the hybrid force/position control base on fuzzy PID is designed to realize active force control. Nevertheless, the sharp edge phenomenon occurs although the force control algorithm, which seriously affects the grinding quality of blades. Finally, the fusion control of force and torque is proposed to weaken the sharp edge phenomenon. The experiment proves that the introduction of torque control avoids effectively the sharp edge phenomenon. Meanwhile, comparing the proposed control algorithm with the traditional PID control, the results show that the proposed hybrid force/position control based on fuzzy PID can ensure the stability of the contact force and improve the quality of the aviation blades.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-05061-y</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2020-03, Vol.107 (3-4), p.1741-1754 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490866869 |
source | Springer Link |
subjects | Active control Algorithms Aviation Blades CAE) and Design Compensation Computer-Aided Engineering (CAD Contact force Control algorithms Control stability Control theory Engineering Fuzzy control Gravitation Grinding Industrial and Production Engineering Mechanical Engineering Media Management Original Article Parameter identification Proportional integral derivative Robot control Torque |
title | Design and implementation of hybrid force/position control for robot automation grinding aviation blade based on fuzzy PID |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20implementation%20of%20hybrid%20force/position%20control%20for%20robot%20automation%20grinding%20aviation%20blade%20based%20on%20fuzzy%20PID&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Zhang,%20Hongyao&rft.date=2020-03-01&rft.volume=107&rft.issue=3-4&rft.spage=1741&rft.epage=1754&rft.pages=1741-1754&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-05061-y&rft_dat=%3Cproquest_cross%3E2490866869%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-c3d4167aaec41f46ab6fea2f46b9123e21348f68c543817821df8145e09719b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387920613&rft_id=info:pmid/&rfr_iscdi=true |