Loading…
4D printing: processability and measurement of recovery force in shape memory polymers
The fourth dimension in 4D printing refers to the ability of materials to alter its form after they are produced, thereby providing additional functional capabilities and performance-driven applications. Stimuli materials provide this capability through the use of shape memory polymers. For this res...
Saved in:
Published in: | International journal of advanced manufacturing technology 2017-03, Vol.89 (5-8), p.1827-1836 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c604t-8864bdd03313743bede1b641481521b4ae7871553b3a5465cf5b06953f2e318b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c604t-8864bdd03313743bede1b641481521b4ae7871553b3a5465cf5b06953f2e318b3 |
container_end_page | 1836 |
container_issue | 5-8 |
container_start_page | 1827 |
container_title | International journal of advanced manufacturing technology |
container_volume | 89 |
creator | Monzón, M. D. Paz, R. Pei, E. Ortega, F. Suárez, L. A. Ortega, Z. Alemán, M. E. Plucinski, T. Clow, N. |
description | The fourth dimension in 4D printing refers to the ability of materials to alter its form after they are produced, thereby providing additional functional capabilities and performance-driven applications. Stimuli materials provide this capability through the use of shape memory polymers. For this research, the property of programming the determined shape is achieved through controlled heat under laboratory conditions. This paper shows the potential to process and experiment with thermoplastic polyurethane as a shape memory material. Taking a step further, we ascertain the properties of this material through extrusion-based additive manufacturing processes and produce parts for testing. The results show that the characteristics of the 3D printed parts successfully retain the property of the shape memory and the recovery force allows this to be utilised as a mechanical actuator. The recovery stress has been recorded to be between 0.45 and 0.61 MPa (at feed rate 990 mm/min). The maximum level of recovery stress is similar to the same material being processed through conventional compression moulding. Lastly, we designed and produced a coil as an actuator to demonstrate that the same material can be extended to other applications. |
doi_str_mv | 10.1007/s00170-016-9233-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490875558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880755639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-8864bdd03313743bede1b641481521b4ae7871553b3a5465cf5b06953f2e318b3</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoOI7-AHcB19Xc5tHUnYxPGHCjbkPS3o4dps2YdIT596bUhRsHArmE75wbziHkEtg1MFbcRMagYBkDlZU551l5RGYg0sAZyGMyY7nSGS-UPiVnMa4TrUDpGfkQ93Qb2n5o-9VtmnyFMVrXbtphT21f0w5t3AXssB-ob2jAyn9j2NPGhwpp29P4abeYsM6n163f7DsM8ZycNHYT8eL3npP3x4e3xXO2fH16Wdwts0oxMWRaK-HqmnEOvBDcYY3glAChQebghMVCFyAld9xKoWTVSMdUKXmTIwft-JxcTb7p5187jINZ-13o00qTi5LpQkqpD1K5SqcUgh2iQGuWrBQvEwUTVQUfY8DGpPg6G_YGmBmrMFMVJiVsxirMqMknTRyjXmH44_yv6AeEZIld</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262269440</pqid></control><display><type>article</type><title>4D printing: processability and measurement of recovery force in shape memory polymers</title><source>Springer Nature</source><creator>Monzón, M. D. ; Paz, R. ; Pei, E. ; Ortega, F. ; Suárez, L. A. ; Ortega, Z. ; Alemán, M. E. ; Plucinski, T. ; Clow, N.</creator><creatorcontrib>Monzón, M. D. ; Paz, R. ; Pei, E. ; Ortega, F. ; Suárez, L. A. ; Ortega, Z. ; Alemán, M. E. ; Plucinski, T. ; Clow, N.</creatorcontrib><description>The fourth dimension in 4D printing refers to the ability of materials to alter its form after they are produced, thereby providing additional functional capabilities and performance-driven applications. Stimuli materials provide this capability through the use of shape memory polymers. For this research, the property of programming the determined shape is achieved through controlled heat under laboratory conditions. This paper shows the potential to process and experiment with thermoplastic polyurethane as a shape memory material. Taking a step further, we ascertain the properties of this material through extrusion-based additive manufacturing processes and produce parts for testing. The results show that the characteristics of the 3D printed parts successfully retain the property of the shape memory and the recovery force allows this to be utilised as a mechanical actuator. The recovery stress has been recorded to be between 0.45 and 0.61 MPa (at feed rate 990 mm/min). The maximum level of recovery stress is similar to the same material being processed through conventional compression moulding. Lastly, we designed and produced a coil as an actuator to demonstrate that the same material can be extended to other applications.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-016-9233-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Actuators ; Alloys ; Biodegradable materials ; CAE) and Design ; Coils ; Computer-Aided Engineering (CAD ; Engineering ; Extrusion ; Feed rate ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Molding (process) ; Original Article ; Polymers ; Polyurethane resins ; Pressure molding ; Recovery ; Shape memory ; Three dimensional printing ; Urethane thermoplastic elastomers</subject><ispartof>International journal of advanced manufacturing technology, 2017-03, Vol.89 (5-8), p.1827-1836</ispartof><rights>Springer-Verlag London 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2016). All Rights Reserved.</rights><rights>Springer-Verlag London 2016.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-8864bdd03313743bede1b641481521b4ae7871553b3a5465cf5b06953f2e318b3</citedby><cites>FETCH-LOGICAL-c604t-8864bdd03313743bede1b641481521b4ae7871553b3a5465cf5b06953f2e318b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Monzón, M. D.</creatorcontrib><creatorcontrib>Paz, R.</creatorcontrib><creatorcontrib>Pei, E.</creatorcontrib><creatorcontrib>Ortega, F.</creatorcontrib><creatorcontrib>Suárez, L. A.</creatorcontrib><creatorcontrib>Ortega, Z.</creatorcontrib><creatorcontrib>Alemán, M. E.</creatorcontrib><creatorcontrib>Plucinski, T.</creatorcontrib><creatorcontrib>Clow, N.</creatorcontrib><title>4D printing: processability and measurement of recovery force in shape memory polymers</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The fourth dimension in 4D printing refers to the ability of materials to alter its form after they are produced, thereby providing additional functional capabilities and performance-driven applications. Stimuli materials provide this capability through the use of shape memory polymers. For this research, the property of programming the determined shape is achieved through controlled heat under laboratory conditions. This paper shows the potential to process and experiment with thermoplastic polyurethane as a shape memory material. Taking a step further, we ascertain the properties of this material through extrusion-based additive manufacturing processes and produce parts for testing. The results show that the characteristics of the 3D printed parts successfully retain the property of the shape memory and the recovery force allows this to be utilised as a mechanical actuator. The recovery stress has been recorded to be between 0.45 and 0.61 MPa (at feed rate 990 mm/min). The maximum level of recovery stress is similar to the same material being processed through conventional compression moulding. Lastly, we designed and produced a coil as an actuator to demonstrate that the same material can be extended to other applications.</description><subject>Actuators</subject><subject>Alloys</subject><subject>Biodegradable materials</subject><subject>CAE) and Design</subject><subject>Coils</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Extrusion</subject><subject>Feed rate</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Molding (process)</subject><subject>Original Article</subject><subject>Polymers</subject><subject>Polyurethane resins</subject><subject>Pressure molding</subject><subject>Recovery</subject><subject>Shape memory</subject><subject>Three dimensional printing</subject><subject>Urethane thermoplastic elastomers</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLxDAUhYMoOI7-AHcB19Xc5tHUnYxPGHCjbkPS3o4dps2YdIT596bUhRsHArmE75wbziHkEtg1MFbcRMagYBkDlZU551l5RGYg0sAZyGMyY7nSGS-UPiVnMa4TrUDpGfkQ93Qb2n5o-9VtmnyFMVrXbtphT21f0w5t3AXssB-ob2jAyn9j2NPGhwpp29P4abeYsM6n163f7DsM8ZycNHYT8eL3npP3x4e3xXO2fH16Wdwts0oxMWRaK-HqmnEOvBDcYY3glAChQebghMVCFyAld9xKoWTVSMdUKXmTIwft-JxcTb7p5187jINZ-13o00qTi5LpQkqpD1K5SqcUgh2iQGuWrBQvEwUTVQUfY8DGpPg6G_YGmBmrMFMVJiVsxirMqMknTRyjXmH44_yv6AeEZIld</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Monzón, M. D.</creator><creator>Paz, R.</creator><creator>Pei, E.</creator><creator>Ortega, F.</creator><creator>Suárez, L. A.</creator><creator>Ortega, Z.</creator><creator>Alemán, M. E.</creator><creator>Plucinski, T.</creator><creator>Clow, N.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170301</creationdate><title>4D printing: processability and measurement of recovery force in shape memory polymers</title><author>Monzón, M. D. ; Paz, R. ; Pei, E. ; Ortega, F. ; Suárez, L. A. ; Ortega, Z. ; Alemán, M. E. ; Plucinski, T. ; Clow, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-8864bdd03313743bede1b641481521b4ae7871553b3a5465cf5b06953f2e318b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actuators</topic><topic>Alloys</topic><topic>Biodegradable materials</topic><topic>CAE) and Design</topic><topic>Coils</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Extrusion</topic><topic>Feed rate</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Molding (process)</topic><topic>Original Article</topic><topic>Polymers</topic><topic>Polyurethane resins</topic><topic>Pressure molding</topic><topic>Recovery</topic><topic>Shape memory</topic><topic>Three dimensional printing</topic><topic>Urethane thermoplastic elastomers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monzón, M. D.</creatorcontrib><creatorcontrib>Paz, R.</creatorcontrib><creatorcontrib>Pei, E.</creatorcontrib><creatorcontrib>Ortega, F.</creatorcontrib><creatorcontrib>Suárez, L. A.</creatorcontrib><creatorcontrib>Ortega, Z.</creatorcontrib><creatorcontrib>Alemán, M. E.</creatorcontrib><creatorcontrib>Plucinski, T.</creatorcontrib><creatorcontrib>Clow, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monzón, M. D.</au><au>Paz, R.</au><au>Pei, E.</au><au>Ortega, F.</au><au>Suárez, L. A.</au><au>Ortega, Z.</au><au>Alemán, M. E.</au><au>Plucinski, T.</au><au>Clow, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>4D printing: processability and measurement of recovery force in shape memory polymers</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>89</volume><issue>5-8</issue><spage>1827</spage><epage>1836</epage><pages>1827-1836</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The fourth dimension in 4D printing refers to the ability of materials to alter its form after they are produced, thereby providing additional functional capabilities and performance-driven applications. Stimuli materials provide this capability through the use of shape memory polymers. For this research, the property of programming the determined shape is achieved through controlled heat under laboratory conditions. This paper shows the potential to process and experiment with thermoplastic polyurethane as a shape memory material. Taking a step further, we ascertain the properties of this material through extrusion-based additive manufacturing processes and produce parts for testing. The results show that the characteristics of the 3D printed parts successfully retain the property of the shape memory and the recovery force allows this to be utilised as a mechanical actuator. The recovery stress has been recorded to be between 0.45 and 0.61 MPa (at feed rate 990 mm/min). The maximum level of recovery stress is similar to the same material being processed through conventional compression moulding. Lastly, we designed and produced a coil as an actuator to demonstrate that the same material can be extended to other applications.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-016-9233-9</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2017-03, Vol.89 (5-8), p.1827-1836 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490875558 |
source | Springer Nature |
subjects | Actuators Alloys Biodegradable materials CAE) and Design Coils Computer-Aided Engineering (CAD Engineering Extrusion Feed rate Industrial and Production Engineering Mechanical Engineering Media Management Molding (process) Original Article Polymers Polyurethane resins Pressure molding Recovery Shape memory Three dimensional printing Urethane thermoplastic elastomers |
title | 4D printing: processability and measurement of recovery force in shape memory polymers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=4D%20printing:%20processability%20and%20measurement%20of%20recovery%20force%20in%20shape%20memory%20polymers&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Monz%C3%B3n,%20M.%20D.&rft.date=2017-03-01&rft.volume=89&rft.issue=5-8&rft.spage=1827&rft.epage=1836&rft.pages=1827-1836&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-016-9233-9&rft_dat=%3Cproquest_cross%3E1880755639%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c604t-8864bdd03313743bede1b641481521b4ae7871553b3a5465cf5b06953f2e318b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262269440&rft_id=info:pmid/&rfr_iscdi=true |