Loading…

Electrical conductivity, mechanical strength and corrosion characteristics of spark plasma sintered Al-Nb nanocomposite

An experimental study of the microstructure, electrical conductivity, corrosion characteristics and mechanical strength of Al-Nb nanocomposite consolidated via spark plasma sintering was the focus of this work. The start-up powders as well as the sintered samples were characterised with X-ray diffra...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2019-04, Vol.101 (9-12), p.2275-2282
Main Authors: Ujah, C. O., Popoola, A. P. I., Popoola, O. M., Aigbodion, V. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An experimental study of the microstructure, electrical conductivity, corrosion characteristics and mechanical strength of Al-Nb nanocomposite consolidated via spark plasma sintering was the focus of this work. The start-up powders as well as the sintered samples were characterised with X-ray diffractometer, transmission electron microscopy and field-emission scanning electron microscope equipped with energy dispersive X-ray spectroscopy. The microhardness of the sintered samples was tested with Vickers hardness tester. The polarisation test was carried out with Potentiostat Autolab. The electrical conductivity was tested with four-point probe meter. The microstructural results showed homogenous dispersion of Nb reinforcement in the matrix, no grain growth and absence of voids. Good corrosion characteristics were achieved with Al-1Nb and Al-4Nb composites while the highest microhardness of 420 MPa and tensile strength of 138 MPa were obtained with Al-4Nb. The electrical conductivity increased from 38.9 to 40.1% IACS with Al-8Nb. The improved properties were as a result of the optimal sintering parameters, good fabrication attributes of SPS and the synergistic effects of Al and Nb.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-018-3128-x