Loading…
Mathematical model of lever arm coefficient in cold rolling process
The prediction precision of mechanics parameters such as rolling force and torque affects the yield, quality, cost, and benefit of products during the cold strip rolling. The lever arm coefficient is the core linking rolling force and torque, but there is no mathematical model of this in cold rollin...
Saved in:
Published in: | International journal of advanced manufacturing technology 2018-07, Vol.97 (5-8), p.1847-1859 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-5ce3c695571eb44c7624a667595615370420fdd9088c41f3947188bd083163093 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-5ce3c695571eb44c7624a667595615370420fdd9088c41f3947188bd083163093 |
container_end_page | 1859 |
container_issue | 5-8 |
container_start_page | 1847 |
container_title | International journal of advanced manufacturing technology |
container_volume | 97 |
creator | Sun, Jie Liu, Yuan-Ming Wang, Qing-Long Hu, Yu-Kun Zhang, Dian-Hua |
description | The prediction precision of mechanics parameters such as rolling force and torque affects the yield, quality, cost, and benefit of products during the cold strip rolling. The lever arm coefficient is the core linking rolling force and torque, but there is no mathematical model of this in cold rolling. The distribution of rolling pressure and the change rule of lever arm coefficient under different reduction, forward and backward tension stress, deformation resistance, and friction coefficient in cold rolling are illustrated based on 3D (three-dimensional) elastic-plastic FEM (finite element model) simulation. The mathematical model of lever arm coefficient is built according to online measured data processed by BP (back propagation) neural network in the tandem cold rolling plant. The predicted rolling forces calculated on the basis of this model and upper bound method are consistent with online measured values. The proposed model provides valuable guidelines to determine the reduction and check the strength of the equipment such as rolls and stands. |
doi_str_mv | 10.1007/s00170-018-2078-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490892597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2061858390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-5ce3c695571eb44c7624a667595615370420fdd9088c41f3947188bd083163093</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wF3AdfTevLOU4gsqbnQdpplMnTKdqclU8N-bMoIrXV0ufOcc-Ai5RLhGAHOTAdAAA7SMg7HMHJEZSiGYAFTHZAZcWyaMtqfkLOdNoTVqOyOL52p8j9tqbEPV0e1Qx44ODe3iZ0y0Slsahtg0bWhjP9K2L29X0zR0Xduv6S4NIeZ8Tk6aqsvx4ufOydv93evikS1fHp4Wt0sWpLAjUyGKoJ1SBuNKymA0l5XWRjmlUQkDkkNT1w6sDRIb4aRBa1c1WIFagBNzcjX1lt2Pfcyj3wz71JdJz2WJOa6c-ZfimmtAJ_BfCjRaZYWDQuFEhTTknGLjd6ndVunLI_iDdz9598W7P3j3h30-ZXJh-3VMv81_h74BNlqA_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262601931</pqid></control><display><type>article</type><title>Mathematical model of lever arm coefficient in cold rolling process</title><source>Springer Nature</source><creator>Sun, Jie ; Liu, Yuan-Ming ; Wang, Qing-Long ; Hu, Yu-Kun ; Zhang, Dian-Hua</creator><creatorcontrib>Sun, Jie ; Liu, Yuan-Ming ; Wang, Qing-Long ; Hu, Yu-Kun ; Zhang, Dian-Hua</creatorcontrib><description>The prediction precision of mechanics parameters such as rolling force and torque affects the yield, quality, cost, and benefit of products during the cold strip rolling. The lever arm coefficient is the core linking rolling force and torque, but there is no mathematical model of this in cold rolling. The distribution of rolling pressure and the change rule of lever arm coefficient under different reduction, forward and backward tension stress, deformation resistance, and friction coefficient in cold rolling are illustrated based on 3D (three-dimensional) elastic-plastic FEM (finite element model) simulation. The mathematical model of lever arm coefficient is built according to online measured data processed by BP (back propagation) neural network in the tandem cold rolling plant. The predicted rolling forces calculated on the basis of this model and upper bound method are consistent with online measured values. The proposed model provides valuable guidelines to determine the reduction and check the strength of the equipment such as rolls and stands.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-018-2078-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Back propagation networks ; CAE) and Design ; Coefficient of friction ; Cold ; Cold pressing ; Cold rolling ; Computer simulation ; Computer-Aided Engineering (CAD ; Deformation resistance ; Engineering ; Finite element method ; Friction resistance ; Industrial and Production Engineering ; Low temperature resistance ; Mathematical models ; Mechanical Engineering ; Media Management ; Neural networks ; Original Article ; Predictions ; Reduction ; Stress concentration ; Three dimensional models ; Torque ; Upper bounds</subject><ispartof>International journal of advanced manufacturing technology, 2018-07, Vol.97 (5-8), p.1847-1859</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-5ce3c695571eb44c7624a667595615370420fdd9088c41f3947188bd083163093</citedby><cites>FETCH-LOGICAL-c438t-5ce3c695571eb44c7624a667595615370420fdd9088c41f3947188bd083163093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Liu, Yuan-Ming</creatorcontrib><creatorcontrib>Wang, Qing-Long</creatorcontrib><creatorcontrib>Hu, Yu-Kun</creatorcontrib><creatorcontrib>Zhang, Dian-Hua</creatorcontrib><title>Mathematical model of lever arm coefficient in cold rolling process</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The prediction precision of mechanics parameters such as rolling force and torque affects the yield, quality, cost, and benefit of products during the cold strip rolling. The lever arm coefficient is the core linking rolling force and torque, but there is no mathematical model of this in cold rolling. The distribution of rolling pressure and the change rule of lever arm coefficient under different reduction, forward and backward tension stress, deformation resistance, and friction coefficient in cold rolling are illustrated based on 3D (three-dimensional) elastic-plastic FEM (finite element model) simulation. The mathematical model of lever arm coefficient is built according to online measured data processed by BP (back propagation) neural network in the tandem cold rolling plant. The predicted rolling forces calculated on the basis of this model and upper bound method are consistent with online measured values. The proposed model provides valuable guidelines to determine the reduction and check the strength of the equipment such as rolls and stands.</description><subject>Back propagation networks</subject><subject>CAE) and Design</subject><subject>Coefficient of friction</subject><subject>Cold</subject><subject>Cold pressing</subject><subject>Cold rolling</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Deformation resistance</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Friction resistance</subject><subject>Industrial and Production Engineering</subject><subject>Low temperature resistance</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Predictions</subject><subject>Reduction</subject><subject>Stress concentration</subject><subject>Three dimensional models</subject><subject>Torque</subject><subject>Upper bounds</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wF3AdfTevLOU4gsqbnQdpplMnTKdqclU8N-bMoIrXV0ufOcc-Ai5RLhGAHOTAdAAA7SMg7HMHJEZSiGYAFTHZAZcWyaMtqfkLOdNoTVqOyOL52p8j9tqbEPV0e1Qx44ODe3iZ0y0Slsahtg0bWhjP9K2L29X0zR0Xduv6S4NIeZ8Tk6aqsvx4ufOydv93evikS1fHp4Wt0sWpLAjUyGKoJ1SBuNKymA0l5XWRjmlUQkDkkNT1w6sDRIb4aRBa1c1WIFagBNzcjX1lt2Pfcyj3wz71JdJz2WJOa6c-ZfimmtAJ_BfCjRaZYWDQuFEhTTknGLjd6ndVunLI_iDdz9598W7P3j3h30-ZXJh-3VMv81_h74BNlqA_g</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Sun, Jie</creator><creator>Liu, Yuan-Ming</creator><creator>Wang, Qing-Long</creator><creator>Hu, Yu-Kun</creator><creator>Zhang, Dian-Hua</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180701</creationdate><title>Mathematical model of lever arm coefficient in cold rolling process</title><author>Sun, Jie ; Liu, Yuan-Ming ; Wang, Qing-Long ; Hu, Yu-Kun ; Zhang, Dian-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-5ce3c695571eb44c7624a667595615370420fdd9088c41f3947188bd083163093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Back propagation networks</topic><topic>CAE) and Design</topic><topic>Coefficient of friction</topic><topic>Cold</topic><topic>Cold pressing</topic><topic>Cold rolling</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Deformation resistance</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Friction resistance</topic><topic>Industrial and Production Engineering</topic><topic>Low temperature resistance</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Predictions</topic><topic>Reduction</topic><topic>Stress concentration</topic><topic>Three dimensional models</topic><topic>Torque</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Liu, Yuan-Ming</creatorcontrib><creatorcontrib>Wang, Qing-Long</creatorcontrib><creatorcontrib>Hu, Yu-Kun</creatorcontrib><creatorcontrib>Zhang, Dian-Hua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jie</au><au>Liu, Yuan-Ming</au><au>Wang, Qing-Long</au><au>Hu, Yu-Kun</au><au>Zhang, Dian-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical model of lever arm coefficient in cold rolling process</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>97</volume><issue>5-8</issue><spage>1847</spage><epage>1859</epage><pages>1847-1859</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The prediction precision of mechanics parameters such as rolling force and torque affects the yield, quality, cost, and benefit of products during the cold strip rolling. The lever arm coefficient is the core linking rolling force and torque, but there is no mathematical model of this in cold rolling. The distribution of rolling pressure and the change rule of lever arm coefficient under different reduction, forward and backward tension stress, deformation resistance, and friction coefficient in cold rolling are illustrated based on 3D (three-dimensional) elastic-plastic FEM (finite element model) simulation. The mathematical model of lever arm coefficient is built according to online measured data processed by BP (back propagation) neural network in the tandem cold rolling plant. The predicted rolling forces calculated on the basis of this model and upper bound method are consistent with online measured values. The proposed model provides valuable guidelines to determine the reduction and check the strength of the equipment such as rolls and stands.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-018-2078-7</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2018-07, Vol.97 (5-8), p.1847-1859 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490892597 |
source | Springer Nature |
subjects | Back propagation networks CAE) and Design Coefficient of friction Cold Cold pressing Cold rolling Computer simulation Computer-Aided Engineering (CAD Deformation resistance Engineering Finite element method Friction resistance Industrial and Production Engineering Low temperature resistance Mathematical models Mechanical Engineering Media Management Neural networks Original Article Predictions Reduction Stress concentration Three dimensional models Torque Upper bounds |
title | Mathematical model of lever arm coefficient in cold rolling process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20model%20of%20lever%20arm%20coefficient%20in%20cold%20rolling%20process&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Sun,%20Jie&rft.date=2018-07-01&rft.volume=97&rft.issue=5-8&rft.spage=1847&rft.epage=1859&rft.pages=1847-1859&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-018-2078-7&rft_dat=%3Cproquest_cross%3E2061858390%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-5ce3c695571eb44c7624a667595615370420fdd9088c41f3947188bd083163093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262601931&rft_id=info:pmid/&rfr_iscdi=true |