Loading…

Mathematical model of lever arm coefficient in cold rolling process

The prediction precision of mechanics parameters such as rolling force and torque affects the yield, quality, cost, and benefit of products during the cold strip rolling. The lever arm coefficient is the core linking rolling force and torque, but there is no mathematical model of this in cold rollin...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2018-07, Vol.97 (5-8), p.1847-1859
Main Authors: Sun, Jie, Liu, Yuan-Ming, Wang, Qing-Long, Hu, Yu-Kun, Zhang, Dian-Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-5ce3c695571eb44c7624a667595615370420fdd9088c41f3947188bd083163093
cites cdi_FETCH-LOGICAL-c438t-5ce3c695571eb44c7624a667595615370420fdd9088c41f3947188bd083163093
container_end_page 1859
container_issue 5-8
container_start_page 1847
container_title International journal of advanced manufacturing technology
container_volume 97
creator Sun, Jie
Liu, Yuan-Ming
Wang, Qing-Long
Hu, Yu-Kun
Zhang, Dian-Hua
description The prediction precision of mechanics parameters such as rolling force and torque affects the yield, quality, cost, and benefit of products during the cold strip rolling. The lever arm coefficient is the core linking rolling force and torque, but there is no mathematical model of this in cold rolling. The distribution of rolling pressure and the change rule of lever arm coefficient under different reduction, forward and backward tension stress, deformation resistance, and friction coefficient in cold rolling are illustrated based on 3D (three-dimensional) elastic-plastic FEM (finite element model) simulation. The mathematical model of lever arm coefficient is built according to online measured data processed by BP (back propagation) neural network in the tandem cold rolling plant. The predicted rolling forces calculated on the basis of this model and upper bound method are consistent with online measured values. The proposed model provides valuable guidelines to determine the reduction and check the strength of the equipment such as rolls and stands.
doi_str_mv 10.1007/s00170-018-2078-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490892597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2061858390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-5ce3c695571eb44c7624a667595615370420fdd9088c41f3947188bd083163093</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wF3AdfTevLOU4gsqbnQdpplMnTKdqclU8N-bMoIrXV0ufOcc-Ai5RLhGAHOTAdAAA7SMg7HMHJEZSiGYAFTHZAZcWyaMtqfkLOdNoTVqOyOL52p8j9tqbEPV0e1Qx44ODe3iZ0y0Slsahtg0bWhjP9K2L29X0zR0Xduv6S4NIeZ8Tk6aqsvx4ufOydv93evikS1fHp4Wt0sWpLAjUyGKoJ1SBuNKymA0l5XWRjmlUQkDkkNT1w6sDRIb4aRBa1c1WIFagBNzcjX1lt2Pfcyj3wz71JdJz2WJOa6c-ZfimmtAJ_BfCjRaZYWDQuFEhTTknGLjd6ndVunLI_iDdz9598W7P3j3h30-ZXJh-3VMv81_h74BNlqA_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262601931</pqid></control><display><type>article</type><title>Mathematical model of lever arm coefficient in cold rolling process</title><source>Springer Nature</source><creator>Sun, Jie ; Liu, Yuan-Ming ; Wang, Qing-Long ; Hu, Yu-Kun ; Zhang, Dian-Hua</creator><creatorcontrib>Sun, Jie ; Liu, Yuan-Ming ; Wang, Qing-Long ; Hu, Yu-Kun ; Zhang, Dian-Hua</creatorcontrib><description>The prediction precision of mechanics parameters such as rolling force and torque affects the yield, quality, cost, and benefit of products during the cold strip rolling. The lever arm coefficient is the core linking rolling force and torque, but there is no mathematical model of this in cold rolling. The distribution of rolling pressure and the change rule of lever arm coefficient under different reduction, forward and backward tension stress, deformation resistance, and friction coefficient in cold rolling are illustrated based on 3D (three-dimensional) elastic-plastic FEM (finite element model) simulation. The mathematical model of lever arm coefficient is built according to online measured data processed by BP (back propagation) neural network in the tandem cold rolling plant. The predicted rolling forces calculated on the basis of this model and upper bound method are consistent with online measured values. The proposed model provides valuable guidelines to determine the reduction and check the strength of the equipment such as rolls and stands.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-018-2078-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Back propagation networks ; CAE) and Design ; Coefficient of friction ; Cold ; Cold pressing ; Cold rolling ; Computer simulation ; Computer-Aided Engineering (CAD ; Deformation resistance ; Engineering ; Finite element method ; Friction resistance ; Industrial and Production Engineering ; Low temperature resistance ; Mathematical models ; Mechanical Engineering ; Media Management ; Neural networks ; Original Article ; Predictions ; Reduction ; Stress concentration ; Three dimensional models ; Torque ; Upper bounds</subject><ispartof>International journal of advanced manufacturing technology, 2018-07, Vol.97 (5-8), p.1847-1859</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-5ce3c695571eb44c7624a667595615370420fdd9088c41f3947188bd083163093</citedby><cites>FETCH-LOGICAL-c438t-5ce3c695571eb44c7624a667595615370420fdd9088c41f3947188bd083163093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Liu, Yuan-Ming</creatorcontrib><creatorcontrib>Wang, Qing-Long</creatorcontrib><creatorcontrib>Hu, Yu-Kun</creatorcontrib><creatorcontrib>Zhang, Dian-Hua</creatorcontrib><title>Mathematical model of lever arm coefficient in cold rolling process</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The prediction precision of mechanics parameters such as rolling force and torque affects the yield, quality, cost, and benefit of products during the cold strip rolling. The lever arm coefficient is the core linking rolling force and torque, but there is no mathematical model of this in cold rolling. The distribution of rolling pressure and the change rule of lever arm coefficient under different reduction, forward and backward tension stress, deformation resistance, and friction coefficient in cold rolling are illustrated based on 3D (three-dimensional) elastic-plastic FEM (finite element model) simulation. The mathematical model of lever arm coefficient is built according to online measured data processed by BP (back propagation) neural network in the tandem cold rolling plant. The predicted rolling forces calculated on the basis of this model and upper bound method are consistent with online measured values. The proposed model provides valuable guidelines to determine the reduction and check the strength of the equipment such as rolls and stands.</description><subject>Back propagation networks</subject><subject>CAE) and Design</subject><subject>Coefficient of friction</subject><subject>Cold</subject><subject>Cold pressing</subject><subject>Cold rolling</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Deformation resistance</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Friction resistance</subject><subject>Industrial and Production Engineering</subject><subject>Low temperature resistance</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Predictions</subject><subject>Reduction</subject><subject>Stress concentration</subject><subject>Three dimensional models</subject><subject>Torque</subject><subject>Upper bounds</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wF3AdfTevLOU4gsqbnQdpplMnTKdqclU8N-bMoIrXV0ufOcc-Ai5RLhGAHOTAdAAA7SMg7HMHJEZSiGYAFTHZAZcWyaMtqfkLOdNoTVqOyOL52p8j9tqbEPV0e1Qx44ODe3iZ0y0Slsahtg0bWhjP9K2L29X0zR0Xduv6S4NIeZ8Tk6aqsvx4ufOydv93evikS1fHp4Wt0sWpLAjUyGKoJ1SBuNKymA0l5XWRjmlUQkDkkNT1w6sDRIb4aRBa1c1WIFagBNzcjX1lt2Pfcyj3wz71JdJz2WJOa6c-ZfimmtAJ_BfCjRaZYWDQuFEhTTknGLjd6ndVunLI_iDdz9598W7P3j3h30-ZXJh-3VMv81_h74BNlqA_g</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Sun, Jie</creator><creator>Liu, Yuan-Ming</creator><creator>Wang, Qing-Long</creator><creator>Hu, Yu-Kun</creator><creator>Zhang, Dian-Hua</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180701</creationdate><title>Mathematical model of lever arm coefficient in cold rolling process</title><author>Sun, Jie ; Liu, Yuan-Ming ; Wang, Qing-Long ; Hu, Yu-Kun ; Zhang, Dian-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-5ce3c695571eb44c7624a667595615370420fdd9088c41f3947188bd083163093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Back propagation networks</topic><topic>CAE) and Design</topic><topic>Coefficient of friction</topic><topic>Cold</topic><topic>Cold pressing</topic><topic>Cold rolling</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Deformation resistance</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Friction resistance</topic><topic>Industrial and Production Engineering</topic><topic>Low temperature resistance</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Predictions</topic><topic>Reduction</topic><topic>Stress concentration</topic><topic>Three dimensional models</topic><topic>Torque</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Liu, Yuan-Ming</creatorcontrib><creatorcontrib>Wang, Qing-Long</creatorcontrib><creatorcontrib>Hu, Yu-Kun</creatorcontrib><creatorcontrib>Zhang, Dian-Hua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jie</au><au>Liu, Yuan-Ming</au><au>Wang, Qing-Long</au><au>Hu, Yu-Kun</au><au>Zhang, Dian-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical model of lever arm coefficient in cold rolling process</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>97</volume><issue>5-8</issue><spage>1847</spage><epage>1859</epage><pages>1847-1859</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The prediction precision of mechanics parameters such as rolling force and torque affects the yield, quality, cost, and benefit of products during the cold strip rolling. The lever arm coefficient is the core linking rolling force and torque, but there is no mathematical model of this in cold rolling. The distribution of rolling pressure and the change rule of lever arm coefficient under different reduction, forward and backward tension stress, deformation resistance, and friction coefficient in cold rolling are illustrated based on 3D (three-dimensional) elastic-plastic FEM (finite element model) simulation. The mathematical model of lever arm coefficient is built according to online measured data processed by BP (back propagation) neural network in the tandem cold rolling plant. The predicted rolling forces calculated on the basis of this model and upper bound method are consistent with online measured values. The proposed model provides valuable guidelines to determine the reduction and check the strength of the equipment such as rolls and stands.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-018-2078-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2018-07, Vol.97 (5-8), p.1847-1859
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490892597
source Springer Nature
subjects Back propagation networks
CAE) and Design
Coefficient of friction
Cold
Cold pressing
Cold rolling
Computer simulation
Computer-Aided Engineering (CAD
Deformation resistance
Engineering
Finite element method
Friction resistance
Industrial and Production Engineering
Low temperature resistance
Mathematical models
Mechanical Engineering
Media Management
Neural networks
Original Article
Predictions
Reduction
Stress concentration
Three dimensional models
Torque
Upper bounds
title Mathematical model of lever arm coefficient in cold rolling process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20model%20of%20lever%20arm%20coefficient%20in%20cold%20rolling%20process&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Sun,%20Jie&rft.date=2018-07-01&rft.volume=97&rft.issue=5-8&rft.spage=1847&rft.epage=1859&rft.pages=1847-1859&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-018-2078-7&rft_dat=%3Cproquest_cross%3E2061858390%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-5ce3c695571eb44c7624a667595615370420fdd9088c41f3947188bd083163093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262601931&rft_id=info:pmid/&rfr_iscdi=true