Loading…
Statistical tolerance allocation design considering form errors based on rigid assembly simulation and deep Q-network
Consideration of form errors involves real machining features in tolerance modeling but increases uncertainties in functional requirement estimation, when tackling the trade-off between the cost and precision performance. In this paper, a statistical tolerance allocation method is presented to solve...
Saved in:
Published in: | International journal of advanced manufacturing technology 2020-12, Vol.111 (11-12), p.3029-3045 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-4503e731d11d234352e39c65c9663ad6c375b946fd632fa9d132d460119691653 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-4503e731d11d234352e39c65c9663ad6c375b946fd632fa9d132d460119691653 |
container_end_page | 3045 |
container_issue | 11-12 |
container_start_page | 3029 |
container_title | International journal of advanced manufacturing technology |
container_volume | 111 |
creator | He, Ci Zhang, Shuyou Qiu, Lemiao Wang, Zili Wang, Yang Liu, Xiaojian |
description | Consideration of form errors involves real machining features in tolerance modeling but increases uncertainties in functional requirement estimation, when tackling the trade-off between the cost and precision performance. In this paper, a statistical tolerance allocation method is presented to solve this problem. First of all, a top-down stepwise designing procedure is designed for complex products, and a combination of Jacobian matrix and Skin Model Shapes is applied in modeling the mechanical joints. Then, rigid assembly simulations of point-based surfaces are further advanced to provide an accurate estimation of the assembly state, through considering physical constraints and termination conditions. A mini-batch gradient descent method and a backtracking strategy are also proposed to promote computational efficiency. Finally, a deep Q-network is implemented in optimal computation after characterizing the systematic state, action domain, and reward function. The general tolerance scheme is then achieved using the trained Q-network. The results of 6 experiments each with 200 samples show the proposed method is capable of assessing tolerance schemes with 35.2% and 47.2% lower manufacturing costs and 16.7% and 28.3% higher precision maintenance on average than conventional particle swarm optimization and Monte Carlo method respectively. |
doi_str_mv | 10.1007/s00170-020-06283-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490902888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490902888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-4503e731d11d234352e39c65c9663ad6c375b946fd632fa9d132d460119691653</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9Ek06btURa_QBBRzyGbpEvWNqlJy7L_3qwVvHkY5jDP-w48CF0yes0orW4SpayihPI8gtdAdkdowQoAApSVx2hBuagJVKI-RWcpbTMumKgXaHob1ejS6LTq8Bg6G5XXFquuCzofgsfGJrfxWAefnLHR-Q1uQ-yxjTHEhNcqWYMzF93GGaxSsv262-Pk-qmbG5Q3ucUO-JV4O-5C_DxHJ63qkr343Uv0cX_3vnokzy8PT6vbZ6JB8JEUJQVbATOMGQ4FlNxCo0WpGyFAGaGhKtdNIVojgLeqMQy4KQRlrBENEyUs0dXcO8TwNdk0ym2Yos8vJS8a2lBe13Wm-EzpGFKKtpVDdL2Ke8moPOiVs16Z9cofvXKXQzCH0nBwYuNf9T-pbxF5frM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490902888</pqid></control><display><type>article</type><title>Statistical tolerance allocation design considering form errors based on rigid assembly simulation and deep Q-network</title><source>Springer Nature</source><creator>He, Ci ; Zhang, Shuyou ; Qiu, Lemiao ; Wang, Zili ; Wang, Yang ; Liu, Xiaojian</creator><creatorcontrib>He, Ci ; Zhang, Shuyou ; Qiu, Lemiao ; Wang, Zili ; Wang, Yang ; Liu, Xiaojian</creatorcontrib><description>Consideration of form errors involves real machining features in tolerance modeling but increases uncertainties in functional requirement estimation, when tackling the trade-off between the cost and precision performance. In this paper, a statistical tolerance allocation method is presented to solve this problem. First of all, a top-down stepwise designing procedure is designed for complex products, and a combination of Jacobian matrix and Skin Model Shapes is applied in modeling the mechanical joints. Then, rigid assembly simulations of point-based surfaces are further advanced to provide an accurate estimation of the assembly state, through considering physical constraints and termination conditions. A mini-batch gradient descent method and a backtracking strategy are also proposed to promote computational efficiency. Finally, a deep Q-network is implemented in optimal computation after characterizing the systematic state, action domain, and reward function. The general tolerance scheme is then achieved using the trained Q-network. The results of 6 experiments each with 200 samples show the proposed method is capable of assessing tolerance schemes with 35.2% and 47.2% lower manufacturing costs and 16.7% and 28.3% higher precision maintenance on average than conventional particle swarm optimization and Monte Carlo method respectively.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-06283-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Assembly ; CAE) and Design ; Computer-Aided Engineering (CAD ; Engineering ; Industrial and Production Engineering ; Jacobi matrix method ; Jacobian matrix ; Machining ; Mechanical Engineering ; Media Management ; Monte Carlo simulation ; Original Article ; Particle swarm optimization ; Production costs ; Statistical methods</subject><ispartof>International journal of advanced manufacturing technology, 2020-12, Vol.111 (11-12), p.3029-3045</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-4503e731d11d234352e39c65c9663ad6c375b946fd632fa9d132d460119691653</citedby><cites>FETCH-LOGICAL-c362t-4503e731d11d234352e39c65c9663ad6c375b946fd632fa9d132d460119691653</cites><orcidid>0000-0001-9358-0099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>He, Ci</creatorcontrib><creatorcontrib>Zhang, Shuyou</creatorcontrib><creatorcontrib>Qiu, Lemiao</creatorcontrib><creatorcontrib>Wang, Zili</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Liu, Xiaojian</creatorcontrib><title>Statistical tolerance allocation design considering form errors based on rigid assembly simulation and deep Q-network</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Consideration of form errors involves real machining features in tolerance modeling but increases uncertainties in functional requirement estimation, when tackling the trade-off between the cost and precision performance. In this paper, a statistical tolerance allocation method is presented to solve this problem. First of all, a top-down stepwise designing procedure is designed for complex products, and a combination of Jacobian matrix and Skin Model Shapes is applied in modeling the mechanical joints. Then, rigid assembly simulations of point-based surfaces are further advanced to provide an accurate estimation of the assembly state, through considering physical constraints and termination conditions. A mini-batch gradient descent method and a backtracking strategy are also proposed to promote computational efficiency. Finally, a deep Q-network is implemented in optimal computation after characterizing the systematic state, action domain, and reward function. The general tolerance scheme is then achieved using the trained Q-network. The results of 6 experiments each with 200 samples show the proposed method is capable of assessing tolerance schemes with 35.2% and 47.2% lower manufacturing costs and 16.7% and 28.3% higher precision maintenance on average than conventional particle swarm optimization and Monte Carlo method respectively.</description><subject>Assembly</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrix</subject><subject>Machining</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Monte Carlo simulation</subject><subject>Original Article</subject><subject>Particle swarm optimization</subject><subject>Production costs</subject><subject>Statistical methods</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9Ek06btURa_QBBRzyGbpEvWNqlJy7L_3qwVvHkY5jDP-w48CF0yes0orW4SpayihPI8gtdAdkdowQoAApSVx2hBuagJVKI-RWcpbTMumKgXaHob1ejS6LTq8Bg6G5XXFquuCzofgsfGJrfxWAefnLHR-Q1uQ-yxjTHEhNcqWYMzF93GGaxSsv262-Pk-qmbG5Q3ucUO-JV4O-5C_DxHJ63qkr343Uv0cX_3vnokzy8PT6vbZ6JB8JEUJQVbATOMGQ4FlNxCo0WpGyFAGaGhKtdNIVojgLeqMQy4KQRlrBENEyUs0dXcO8TwNdk0ym2Yos8vJS8a2lBe13Wm-EzpGFKKtpVDdL2Ke8moPOiVs16Z9cofvXKXQzCH0nBwYuNf9T-pbxF5frM</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>He, Ci</creator><creator>Zhang, Shuyou</creator><creator>Qiu, Lemiao</creator><creator>Wang, Zili</creator><creator>Wang, Yang</creator><creator>Liu, Xiaojian</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9358-0099</orcidid></search><sort><creationdate>20201201</creationdate><title>Statistical tolerance allocation design considering form errors based on rigid assembly simulation and deep Q-network</title><author>He, Ci ; Zhang, Shuyou ; Qiu, Lemiao ; Wang, Zili ; Wang, Yang ; Liu, Xiaojian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-4503e731d11d234352e39c65c9663ad6c375b946fd632fa9d132d460119691653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Assembly</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrix</topic><topic>Machining</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Monte Carlo simulation</topic><topic>Original Article</topic><topic>Particle swarm optimization</topic><topic>Production costs</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Ci</creatorcontrib><creatorcontrib>Zhang, Shuyou</creatorcontrib><creatorcontrib>Qiu, Lemiao</creatorcontrib><creatorcontrib>Wang, Zili</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Liu, Xiaojian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Ci</au><au>Zhang, Shuyou</au><au>Qiu, Lemiao</au><au>Wang, Zili</au><au>Wang, Yang</au><au>Liu, Xiaojian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical tolerance allocation design considering form errors based on rigid assembly simulation and deep Q-network</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>111</volume><issue>11-12</issue><spage>3029</spage><epage>3045</epage><pages>3029-3045</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Consideration of form errors involves real machining features in tolerance modeling but increases uncertainties in functional requirement estimation, when tackling the trade-off between the cost and precision performance. In this paper, a statistical tolerance allocation method is presented to solve this problem. First of all, a top-down stepwise designing procedure is designed for complex products, and a combination of Jacobian matrix and Skin Model Shapes is applied in modeling the mechanical joints. Then, rigid assembly simulations of point-based surfaces are further advanced to provide an accurate estimation of the assembly state, through considering physical constraints and termination conditions. A mini-batch gradient descent method and a backtracking strategy are also proposed to promote computational efficiency. Finally, a deep Q-network is implemented in optimal computation after characterizing the systematic state, action domain, and reward function. The general tolerance scheme is then achieved using the trained Q-network. The results of 6 experiments each with 200 samples show the proposed method is capable of assessing tolerance schemes with 35.2% and 47.2% lower manufacturing costs and 16.7% and 28.3% higher precision maintenance on average than conventional particle swarm optimization and Monte Carlo method respectively.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-06283-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9358-0099</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2020-12, Vol.111 (11-12), p.3029-3045 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490902888 |
source | Springer Nature |
subjects | Assembly CAE) and Design Computer-Aided Engineering (CAD Engineering Industrial and Production Engineering Jacobi matrix method Jacobian matrix Machining Mechanical Engineering Media Management Monte Carlo simulation Original Article Particle swarm optimization Production costs Statistical methods |
title | Statistical tolerance allocation design considering form errors based on rigid assembly simulation and deep Q-network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20tolerance%20allocation%20design%20considering%20form%20errors%20based%20on%20rigid%20assembly%20simulation%20and%20deep%20Q-network&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=He,%20Ci&rft.date=2020-12-01&rft.volume=111&rft.issue=11-12&rft.spage=3029&rft.epage=3045&rft.pages=3029-3045&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-06283-w&rft_dat=%3Cproquest_cross%3E2490902888%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-4503e731d11d234352e39c65c9663ad6c375b946fd632fa9d132d460119691653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490902888&rft_id=info:pmid/&rfr_iscdi=true |