Loading…

Statistical tolerance allocation design considering form errors based on rigid assembly simulation and deep Q-network

Consideration of form errors involves real machining features in tolerance modeling but increases uncertainties in functional requirement estimation, when tackling the trade-off between the cost and precision performance. In this paper, a statistical tolerance allocation method is presented to solve...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2020-12, Vol.111 (11-12), p.3029-3045
Main Authors: He, Ci, Zhang, Shuyou, Qiu, Lemiao, Wang, Zili, Wang, Yang, Liu, Xiaojian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-4503e731d11d234352e39c65c9663ad6c375b946fd632fa9d132d460119691653
cites cdi_FETCH-LOGICAL-c362t-4503e731d11d234352e39c65c9663ad6c375b946fd632fa9d132d460119691653
container_end_page 3045
container_issue 11-12
container_start_page 3029
container_title International journal of advanced manufacturing technology
container_volume 111
creator He, Ci
Zhang, Shuyou
Qiu, Lemiao
Wang, Zili
Wang, Yang
Liu, Xiaojian
description Consideration of form errors involves real machining features in tolerance modeling but increases uncertainties in functional requirement estimation, when tackling the trade-off between the cost and precision performance. In this paper, a statistical tolerance allocation method is presented to solve this problem. First of all, a top-down stepwise designing procedure is designed for complex products, and a combination of Jacobian matrix and Skin Model Shapes is applied in modeling the mechanical joints. Then, rigid assembly simulations of point-based surfaces are further advanced to provide an accurate estimation of the assembly state, through considering physical constraints and termination conditions. A mini-batch gradient descent method and a backtracking strategy are also proposed to promote computational efficiency. Finally, a deep Q-network is implemented in optimal computation after characterizing the systematic state, action domain, and reward function. The general tolerance scheme is then achieved using the trained Q-network. The results of 6 experiments each with 200 samples show the proposed method is capable of assessing tolerance schemes with 35.2% and 47.2% lower manufacturing costs and 16.7% and 28.3% higher precision maintenance on average than conventional particle swarm optimization and Monte Carlo method respectively.
doi_str_mv 10.1007/s00170-020-06283-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490902888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490902888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-4503e731d11d234352e39c65c9663ad6c375b946fd632fa9d132d460119691653</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9Ek06btURa_QBBRzyGbpEvWNqlJy7L_3qwVvHkY5jDP-w48CF0yes0orW4SpayihPI8gtdAdkdowQoAApSVx2hBuagJVKI-RWcpbTMumKgXaHob1ejS6LTq8Bg6G5XXFquuCzofgsfGJrfxWAefnLHR-Q1uQ-yxjTHEhNcqWYMzF93GGaxSsv262-Pk-qmbG5Q3ucUO-JV4O-5C_DxHJ63qkr343Uv0cX_3vnokzy8PT6vbZ6JB8JEUJQVbATOMGQ4FlNxCo0WpGyFAGaGhKtdNIVojgLeqMQy4KQRlrBENEyUs0dXcO8TwNdk0ym2Yos8vJS8a2lBe13Wm-EzpGFKKtpVDdL2Ke8moPOiVs16Z9cofvXKXQzCH0nBwYuNf9T-pbxF5frM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490902888</pqid></control><display><type>article</type><title>Statistical tolerance allocation design considering form errors based on rigid assembly simulation and deep Q-network</title><source>Springer Nature</source><creator>He, Ci ; Zhang, Shuyou ; Qiu, Lemiao ; Wang, Zili ; Wang, Yang ; Liu, Xiaojian</creator><creatorcontrib>He, Ci ; Zhang, Shuyou ; Qiu, Lemiao ; Wang, Zili ; Wang, Yang ; Liu, Xiaojian</creatorcontrib><description>Consideration of form errors involves real machining features in tolerance modeling but increases uncertainties in functional requirement estimation, when tackling the trade-off between the cost and precision performance. In this paper, a statistical tolerance allocation method is presented to solve this problem. First of all, a top-down stepwise designing procedure is designed for complex products, and a combination of Jacobian matrix and Skin Model Shapes is applied in modeling the mechanical joints. Then, rigid assembly simulations of point-based surfaces are further advanced to provide an accurate estimation of the assembly state, through considering physical constraints and termination conditions. A mini-batch gradient descent method and a backtracking strategy are also proposed to promote computational efficiency. Finally, a deep Q-network is implemented in optimal computation after characterizing the systematic state, action domain, and reward function. The general tolerance scheme is then achieved using the trained Q-network. The results of 6 experiments each with 200 samples show the proposed method is capable of assessing tolerance schemes with 35.2% and 47.2% lower manufacturing costs and 16.7% and 28.3% higher precision maintenance on average than conventional particle swarm optimization and Monte Carlo method respectively.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-06283-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Assembly ; CAE) and Design ; Computer-Aided Engineering (CAD ; Engineering ; Industrial and Production Engineering ; Jacobi matrix method ; Jacobian matrix ; Machining ; Mechanical Engineering ; Media Management ; Monte Carlo simulation ; Original Article ; Particle swarm optimization ; Production costs ; Statistical methods</subject><ispartof>International journal of advanced manufacturing technology, 2020-12, Vol.111 (11-12), p.3029-3045</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-4503e731d11d234352e39c65c9663ad6c375b946fd632fa9d132d460119691653</citedby><cites>FETCH-LOGICAL-c362t-4503e731d11d234352e39c65c9663ad6c375b946fd632fa9d132d460119691653</cites><orcidid>0000-0001-9358-0099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>He, Ci</creatorcontrib><creatorcontrib>Zhang, Shuyou</creatorcontrib><creatorcontrib>Qiu, Lemiao</creatorcontrib><creatorcontrib>Wang, Zili</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Liu, Xiaojian</creatorcontrib><title>Statistical tolerance allocation design considering form errors based on rigid assembly simulation and deep Q-network</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Consideration of form errors involves real machining features in tolerance modeling but increases uncertainties in functional requirement estimation, when tackling the trade-off between the cost and precision performance. In this paper, a statistical tolerance allocation method is presented to solve this problem. First of all, a top-down stepwise designing procedure is designed for complex products, and a combination of Jacobian matrix and Skin Model Shapes is applied in modeling the mechanical joints. Then, rigid assembly simulations of point-based surfaces are further advanced to provide an accurate estimation of the assembly state, through considering physical constraints and termination conditions. A mini-batch gradient descent method and a backtracking strategy are also proposed to promote computational efficiency. Finally, a deep Q-network is implemented in optimal computation after characterizing the systematic state, action domain, and reward function. The general tolerance scheme is then achieved using the trained Q-network. The results of 6 experiments each with 200 samples show the proposed method is capable of assessing tolerance schemes with 35.2% and 47.2% lower manufacturing costs and 16.7% and 28.3% higher precision maintenance on average than conventional particle swarm optimization and Monte Carlo method respectively.</description><subject>Assembly</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrix</subject><subject>Machining</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Monte Carlo simulation</subject><subject>Original Article</subject><subject>Particle swarm optimization</subject><subject>Production costs</subject><subject>Statistical methods</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9Ek06btURa_QBBRzyGbpEvWNqlJy7L_3qwVvHkY5jDP-w48CF0yes0orW4SpayihPI8gtdAdkdowQoAApSVx2hBuagJVKI-RWcpbTMumKgXaHob1ejS6LTq8Bg6G5XXFquuCzofgsfGJrfxWAefnLHR-Q1uQ-yxjTHEhNcqWYMzF93GGaxSsv262-Pk-qmbG5Q3ucUO-JV4O-5C_DxHJ63qkr343Uv0cX_3vnokzy8PT6vbZ6JB8JEUJQVbATOMGQ4FlNxCo0WpGyFAGaGhKtdNIVojgLeqMQy4KQRlrBENEyUs0dXcO8TwNdk0ym2Yos8vJS8a2lBe13Wm-EzpGFKKtpVDdL2Ke8moPOiVs16Z9cofvXKXQzCH0nBwYuNf9T-pbxF5frM</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>He, Ci</creator><creator>Zhang, Shuyou</creator><creator>Qiu, Lemiao</creator><creator>Wang, Zili</creator><creator>Wang, Yang</creator><creator>Liu, Xiaojian</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9358-0099</orcidid></search><sort><creationdate>20201201</creationdate><title>Statistical tolerance allocation design considering form errors based on rigid assembly simulation and deep Q-network</title><author>He, Ci ; Zhang, Shuyou ; Qiu, Lemiao ; Wang, Zili ; Wang, Yang ; Liu, Xiaojian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-4503e731d11d234352e39c65c9663ad6c375b946fd632fa9d132d460119691653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Assembly</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrix</topic><topic>Machining</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Monte Carlo simulation</topic><topic>Original Article</topic><topic>Particle swarm optimization</topic><topic>Production costs</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Ci</creatorcontrib><creatorcontrib>Zhang, Shuyou</creatorcontrib><creatorcontrib>Qiu, Lemiao</creatorcontrib><creatorcontrib>Wang, Zili</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Liu, Xiaojian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Ci</au><au>Zhang, Shuyou</au><au>Qiu, Lemiao</au><au>Wang, Zili</au><au>Wang, Yang</au><au>Liu, Xiaojian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical tolerance allocation design considering form errors based on rigid assembly simulation and deep Q-network</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>111</volume><issue>11-12</issue><spage>3029</spage><epage>3045</epage><pages>3029-3045</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Consideration of form errors involves real machining features in tolerance modeling but increases uncertainties in functional requirement estimation, when tackling the trade-off between the cost and precision performance. In this paper, a statistical tolerance allocation method is presented to solve this problem. First of all, a top-down stepwise designing procedure is designed for complex products, and a combination of Jacobian matrix and Skin Model Shapes is applied in modeling the mechanical joints. Then, rigid assembly simulations of point-based surfaces are further advanced to provide an accurate estimation of the assembly state, through considering physical constraints and termination conditions. A mini-batch gradient descent method and a backtracking strategy are also proposed to promote computational efficiency. Finally, a deep Q-network is implemented in optimal computation after characterizing the systematic state, action domain, and reward function. The general tolerance scheme is then achieved using the trained Q-network. The results of 6 experiments each with 200 samples show the proposed method is capable of assessing tolerance schemes with 35.2% and 47.2% lower manufacturing costs and 16.7% and 28.3% higher precision maintenance on average than conventional particle swarm optimization and Monte Carlo method respectively.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-06283-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9358-0099</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2020-12, Vol.111 (11-12), p.3029-3045
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490902888
source Springer Nature
subjects Assembly
CAE) and Design
Computer-Aided Engineering (CAD
Engineering
Industrial and Production Engineering
Jacobi matrix method
Jacobian matrix
Machining
Mechanical Engineering
Media Management
Monte Carlo simulation
Original Article
Particle swarm optimization
Production costs
Statistical methods
title Statistical tolerance allocation design considering form errors based on rigid assembly simulation and deep Q-network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20tolerance%20allocation%20design%20considering%20form%20errors%20based%20on%20rigid%20assembly%20simulation%20and%20deep%20Q-network&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=He,%20Ci&rft.date=2020-12-01&rft.volume=111&rft.issue=11-12&rft.spage=3029&rft.epage=3045&rft.pages=3029-3045&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-06283-w&rft_dat=%3Cproquest_cross%3E2490902888%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-4503e731d11d234352e39c65c9663ad6c375b946fd632fa9d132d460119691653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490902888&rft_id=info:pmid/&rfr_iscdi=true