Loading…
Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability
As charge storage occurs both on the surface and in the bulk of material, the dynamics of charge storage is a key issue in the practice of energy storage. Although the energy storage can be increased in the bulk of the material, it often suffers from a quite slow kinetics, which seriously hinders th...
Saved in:
Published in: | Electrochimica acta 2021-02, Vol.368, p.137615, Article 137615 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-7d07e76131bb6ba1e41eb47ccc27d219aa7b5fbbbac3b444c5713554df54e8a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-7d07e76131bb6ba1e41eb47ccc27d219aa7b5fbbbac3b444c5713554df54e8a23 |
container_end_page | |
container_issue | |
container_start_page | 137615 |
container_title | Electrochimica acta |
container_volume | 368 |
creator | Ding, Yangbin Sheng, Haonan Gong, Baozhi Tang, Peisong Pan, Guoxiang Zeng, Yunxiong Yang, Liming Tang, Yanhong Liu, Chengbin |
description | As charge storage occurs both on the surface and in the bulk of material, the dynamics of charge storage is a key issue in the practice of energy storage. Although the energy storage can be increased in the bulk of the material, it often suffers from a quite slow kinetics, which seriously hinders the rate capability. Keeping high surface-induced capacitive contribution is proposed to address this issue. Herein, a porous scaffold, TiO2 nanotube arrays grown in a Ti foil (TiO2 NTs/Ti) is selected as the current collector for electrodeposition of porous polyaniline/reduced graphene oxide (PANI/rGO) hybrid film. The capacitive contribution of PANI/rGO@TiO2/Ti is quantitatively evaluated, showing a high surface-induced capacitive contribution up to 58% at high rates (>25 mV s−1) and large electron transfer coefficient of 2. As a result, the electrode not only shows an ultrahigh specific capacity of 908 C g−1 at 1 mV s−1, but also delivers an outstanding rate capacity of 310 C g−1 at 500 mV s−1. PANI/rGO@TiO2/Ti also shows excellent cycling stability with 80% capacity retention after 10,000 cycles at a high current density of 25 A g−1. |
doi_str_mv | 10.1016/j.electacta.2020.137615 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491198156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620320089</els_id><sourcerecordid>2491198156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-7d07e76131bb6ba1e41eb47ccc27d219aa7b5fbbbac3b444c5713554df54e8a23</originalsourceid><addsrcrecordid>eNqFUdtqGzEQXUoLddN-QwV9XkdaaVfrvoXQGwTSh-RZjKRZr4wjbUdyqX-o31nZLnkNDAwznHPmcprmo-BrwcVwvVvjHl2BGuuOd7Ur9SD6V81KjFq2cuw3r5sV50K2ahiHt827nHeccz1ovmr-_kz7I8SwDxGvCf3BoWdbgmXGiCz9CR5ZhJjyjFgyS5E9hPvu3CoHiwyI4JgZ1GBz2M7tgjQleoLokOVDrRws4EJJxM57UvL4mT1Gj5QLRB_ilpW5jqKwDZGl6SzDCAqyE9XW1crxffNmgn3GD__zVfP49cvD7ff27v7bj9ubu9ZJJUurPddYr5fC2sGCQCXQKu2c67TvxAZA236y1oKTVinlei1k3ys_9QpH6ORV8-miu1D6dcBczC4dKNaRplMbITaj6IeK0heUo5Qz4WQWCk9ARyO4OZlidubZFHMyxVxMqcybCxPrEb8DkskuYP2VD1TxxqfwosY_tMKeRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491198156</pqid></control><display><type>article</type><title>Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability</title><source>ScienceDirect Freedom Collection</source><creator>Ding, Yangbin ; Sheng, Haonan ; Gong, Baozhi ; Tang, Peisong ; Pan, Guoxiang ; Zeng, Yunxiong ; Yang, Liming ; Tang, Yanhong ; Liu, Chengbin</creator><creatorcontrib>Ding, Yangbin ; Sheng, Haonan ; Gong, Baozhi ; Tang, Peisong ; Pan, Guoxiang ; Zeng, Yunxiong ; Yang, Liming ; Tang, Yanhong ; Liu, Chengbin</creatorcontrib><description>As charge storage occurs both on the surface and in the bulk of material, the dynamics of charge storage is a key issue in the practice of energy storage. Although the energy storage can be increased in the bulk of the material, it often suffers from a quite slow kinetics, which seriously hinders the rate capability. Keeping high surface-induced capacitive contribution is proposed to address this issue. Herein, a porous scaffold, TiO2 nanotube arrays grown in a Ti foil (TiO2 NTs/Ti) is selected as the current collector for electrodeposition of porous polyaniline/reduced graphene oxide (PANI/rGO) hybrid film. The capacitive contribution of PANI/rGO@TiO2/Ti is quantitatively evaluated, showing a high surface-induced capacitive contribution up to 58% at high rates (>25 mV s−1) and large electron transfer coefficient of 2. As a result, the electrode not only shows an ultrahigh specific capacity of 908 C g−1 at 1 mV s−1, but also delivers an outstanding rate capacity of 310 C g−1 at 500 mV s−1. PANI/rGO@TiO2/Ti also shows excellent cycling stability with 80% capacity retention after 10,000 cycles at a high current density of 25 A g−1.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.137615</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Arrays ; Charge materials ; Electrochemical energy storage ; Electron transfer ; Energy storage ; Foils ; Graphene ; Nanosheets ; Nanotubes ; Polyaniline ; Polyanilines ; Rate capability ; TiO2 nanotube arrays ; Titanium dioxide</subject><ispartof>Electrochimica acta, 2021-02, Vol.368, p.137615, Article 137615</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-7d07e76131bb6ba1e41eb47ccc27d219aa7b5fbbbac3b444c5713554df54e8a23</citedby><cites>FETCH-LOGICAL-c343t-7d07e76131bb6ba1e41eb47ccc27d219aa7b5fbbbac3b444c5713554df54e8a23</cites><orcidid>0000-0002-5664-0950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ding, Yangbin</creatorcontrib><creatorcontrib>Sheng, Haonan</creatorcontrib><creatorcontrib>Gong, Baozhi</creatorcontrib><creatorcontrib>Tang, Peisong</creatorcontrib><creatorcontrib>Pan, Guoxiang</creatorcontrib><creatorcontrib>Zeng, Yunxiong</creatorcontrib><creatorcontrib>Yang, Liming</creatorcontrib><creatorcontrib>Tang, Yanhong</creatorcontrib><creatorcontrib>Liu, Chengbin</creatorcontrib><title>Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability</title><title>Electrochimica acta</title><description>As charge storage occurs both on the surface and in the bulk of material, the dynamics of charge storage is a key issue in the practice of energy storage. Although the energy storage can be increased in the bulk of the material, it often suffers from a quite slow kinetics, which seriously hinders the rate capability. Keeping high surface-induced capacitive contribution is proposed to address this issue. Herein, a porous scaffold, TiO2 nanotube arrays grown in a Ti foil (TiO2 NTs/Ti) is selected as the current collector for electrodeposition of porous polyaniline/reduced graphene oxide (PANI/rGO) hybrid film. The capacitive contribution of PANI/rGO@TiO2/Ti is quantitatively evaluated, showing a high surface-induced capacitive contribution up to 58% at high rates (>25 mV s−1) and large electron transfer coefficient of 2. As a result, the electrode not only shows an ultrahigh specific capacity of 908 C g−1 at 1 mV s−1, but also delivers an outstanding rate capacity of 310 C g−1 at 500 mV s−1. PANI/rGO@TiO2/Ti also shows excellent cycling stability with 80% capacity retention after 10,000 cycles at a high current density of 25 A g−1.</description><subject>Arrays</subject><subject>Charge materials</subject><subject>Electrochemical energy storage</subject><subject>Electron transfer</subject><subject>Energy storage</subject><subject>Foils</subject><subject>Graphene</subject><subject>Nanosheets</subject><subject>Nanotubes</subject><subject>Polyaniline</subject><subject>Polyanilines</subject><subject>Rate capability</subject><subject>TiO2 nanotube arrays</subject><subject>Titanium dioxide</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUdtqGzEQXUoLddN-QwV9XkdaaVfrvoXQGwTSh-RZjKRZr4wjbUdyqX-o31nZLnkNDAwznHPmcprmo-BrwcVwvVvjHl2BGuuOd7Ur9SD6V81KjFq2cuw3r5sV50K2ahiHt827nHeccz1ovmr-_kz7I8SwDxGvCf3BoWdbgmXGiCz9CR5ZhJjyjFgyS5E9hPvu3CoHiwyI4JgZ1GBz2M7tgjQleoLokOVDrRws4EJJxM57UvL4mT1Gj5QLRB_ilpW5jqKwDZGl6SzDCAqyE9XW1crxffNmgn3GD__zVfP49cvD7ff27v7bj9ubu9ZJJUurPddYr5fC2sGCQCXQKu2c67TvxAZA236y1oKTVinlei1k3ys_9QpH6ORV8-miu1D6dcBczC4dKNaRplMbITaj6IeK0heUo5Qz4WQWCk9ARyO4OZlidubZFHMyxVxMqcybCxPrEb8DkskuYP2VD1TxxqfwosY_tMKeRw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ding, Yangbin</creator><creator>Sheng, Haonan</creator><creator>Gong, Baozhi</creator><creator>Tang, Peisong</creator><creator>Pan, Guoxiang</creator><creator>Zeng, Yunxiong</creator><creator>Yang, Liming</creator><creator>Tang, Yanhong</creator><creator>Liu, Chengbin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5664-0950</orcidid></search><sort><creationdate>20210201</creationdate><title>Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability</title><author>Ding, Yangbin ; Sheng, Haonan ; Gong, Baozhi ; Tang, Peisong ; Pan, Guoxiang ; Zeng, Yunxiong ; Yang, Liming ; Tang, Yanhong ; Liu, Chengbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-7d07e76131bb6ba1e41eb47ccc27d219aa7b5fbbbac3b444c5713554df54e8a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Charge materials</topic><topic>Electrochemical energy storage</topic><topic>Electron transfer</topic><topic>Energy storage</topic><topic>Foils</topic><topic>Graphene</topic><topic>Nanosheets</topic><topic>Nanotubes</topic><topic>Polyaniline</topic><topic>Polyanilines</topic><topic>Rate capability</topic><topic>TiO2 nanotube arrays</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yangbin</creatorcontrib><creatorcontrib>Sheng, Haonan</creatorcontrib><creatorcontrib>Gong, Baozhi</creatorcontrib><creatorcontrib>Tang, Peisong</creatorcontrib><creatorcontrib>Pan, Guoxiang</creatorcontrib><creatorcontrib>Zeng, Yunxiong</creatorcontrib><creatorcontrib>Yang, Liming</creatorcontrib><creatorcontrib>Tang, Yanhong</creatorcontrib><creatorcontrib>Liu, Chengbin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yangbin</au><au>Sheng, Haonan</au><au>Gong, Baozhi</au><au>Tang, Peisong</au><au>Pan, Guoxiang</au><au>Zeng, Yunxiong</au><au>Yang, Liming</au><au>Tang, Yanhong</au><au>Liu, Chengbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability</atitle><jtitle>Electrochimica acta</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>368</volume><spage>137615</spage><pages>137615-</pages><artnum>137615</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>As charge storage occurs both on the surface and in the bulk of material, the dynamics of charge storage is a key issue in the practice of energy storage. Although the energy storage can be increased in the bulk of the material, it often suffers from a quite slow kinetics, which seriously hinders the rate capability. Keeping high surface-induced capacitive contribution is proposed to address this issue. Herein, a porous scaffold, TiO2 nanotube arrays grown in a Ti foil (TiO2 NTs/Ti) is selected as the current collector for electrodeposition of porous polyaniline/reduced graphene oxide (PANI/rGO) hybrid film. The capacitive contribution of PANI/rGO@TiO2/Ti is quantitatively evaluated, showing a high surface-induced capacitive contribution up to 58% at high rates (>25 mV s−1) and large electron transfer coefficient of 2. As a result, the electrode not only shows an ultrahigh specific capacity of 908 C g−1 at 1 mV s−1, but also delivers an outstanding rate capacity of 310 C g−1 at 500 mV s−1. PANI/rGO@TiO2/Ti also shows excellent cycling stability with 80% capacity retention after 10,000 cycles at a high current density of 25 A g−1.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.137615</doi><orcidid>https://orcid.org/0000-0002-5664-0950</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2021-02, Vol.368, p.137615, Article 137615 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2491198156 |
source | ScienceDirect Freedom Collection |
subjects | Arrays Charge materials Electrochemical energy storage Electron transfer Energy storage Foils Graphene Nanosheets Nanotubes Polyaniline Polyanilines Rate capability TiO2 nanotube arrays Titanium dioxide |
title | Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyaniline/reduced%20graphene%20oxide%20nanosheets%20on%20TiO2%20nanotube%20arrays%20as%20a%20high-performance%20supercapacitor%20electrode:%20Understanding%20the%20origin%20of%20high%20rate%20capability&rft.jtitle=Electrochimica%20acta&rft.au=Ding,%20Yangbin&rft.date=2021-02-01&rft.volume=368&rft.spage=137615&rft.pages=137615-&rft.artnum=137615&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.137615&rft_dat=%3Cproquest_cross%3E2491198156%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-7d07e76131bb6ba1e41eb47ccc27d219aa7b5fbbbac3b444c5713554df54e8a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2491198156&rft_id=info:pmid/&rfr_iscdi=true |