Loading…

Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability

As charge storage occurs both on the surface and in the bulk of material, the dynamics of charge storage is a key issue in the practice of energy storage. Although the energy storage can be increased in the bulk of the material, it often suffers from a quite slow kinetics, which seriously hinders th...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2021-02, Vol.368, p.137615, Article 137615
Main Authors: Ding, Yangbin, Sheng, Haonan, Gong, Baozhi, Tang, Peisong, Pan, Guoxiang, Zeng, Yunxiong, Yang, Liming, Tang, Yanhong, Liu, Chengbin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-7d07e76131bb6ba1e41eb47ccc27d219aa7b5fbbbac3b444c5713554df54e8a23
cites cdi_FETCH-LOGICAL-c343t-7d07e76131bb6ba1e41eb47ccc27d219aa7b5fbbbac3b444c5713554df54e8a23
container_end_page
container_issue
container_start_page 137615
container_title Electrochimica acta
container_volume 368
creator Ding, Yangbin
Sheng, Haonan
Gong, Baozhi
Tang, Peisong
Pan, Guoxiang
Zeng, Yunxiong
Yang, Liming
Tang, Yanhong
Liu, Chengbin
description As charge storage occurs both on the surface and in the bulk of material, the dynamics of charge storage is a key issue in the practice of energy storage. Although the energy storage can be increased in the bulk of the material, it often suffers from a quite slow kinetics, which seriously hinders the rate capability. Keeping high surface-induced capacitive contribution is proposed to address this issue. Herein, a porous scaffold, TiO2 nanotube arrays grown in a Ti foil (TiO2 NTs/Ti) is selected as the current collector for electrodeposition of porous polyaniline/reduced graphene oxide (PANI/rGO) hybrid film. The capacitive contribution of PANI/rGO@TiO2/Ti is quantitatively evaluated, showing a high surface-induced capacitive contribution up to 58% at high rates (>25 mV s−1) and large electron transfer coefficient of 2. As a result, the electrode not only shows an ultrahigh specific capacity of 908 C g−1 at 1 mV s−1, but also delivers an outstanding rate capacity of 310 C g−1 at 500 mV s−1. PANI/rGO@TiO2/Ti also shows excellent cycling stability with 80% capacity retention after 10,000 cycles at a high current density of 25 A g−1.
doi_str_mv 10.1016/j.electacta.2020.137615
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491198156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620320089</els_id><sourcerecordid>2491198156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-7d07e76131bb6ba1e41eb47ccc27d219aa7b5fbbbac3b444c5713554df54e8a23</originalsourceid><addsrcrecordid>eNqFUdtqGzEQXUoLddN-QwV9XkdaaVfrvoXQGwTSh-RZjKRZr4wjbUdyqX-o31nZLnkNDAwznHPmcprmo-BrwcVwvVvjHl2BGuuOd7Ur9SD6V81KjFq2cuw3r5sV50K2ahiHt827nHeccz1ovmr-_kz7I8SwDxGvCf3BoWdbgmXGiCz9CR5ZhJjyjFgyS5E9hPvu3CoHiwyI4JgZ1GBz2M7tgjQleoLokOVDrRws4EJJxM57UvL4mT1Gj5QLRB_ilpW5jqKwDZGl6SzDCAqyE9XW1crxffNmgn3GD__zVfP49cvD7ff27v7bj9ubu9ZJJUurPddYr5fC2sGCQCXQKu2c67TvxAZA236y1oKTVinlei1k3ys_9QpH6ORV8-miu1D6dcBczC4dKNaRplMbITaj6IeK0heUo5Qz4WQWCk9ARyO4OZlidubZFHMyxVxMqcybCxPrEb8DkskuYP2VD1TxxqfwosY_tMKeRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491198156</pqid></control><display><type>article</type><title>Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability</title><source>ScienceDirect Freedom Collection</source><creator>Ding, Yangbin ; Sheng, Haonan ; Gong, Baozhi ; Tang, Peisong ; Pan, Guoxiang ; Zeng, Yunxiong ; Yang, Liming ; Tang, Yanhong ; Liu, Chengbin</creator><creatorcontrib>Ding, Yangbin ; Sheng, Haonan ; Gong, Baozhi ; Tang, Peisong ; Pan, Guoxiang ; Zeng, Yunxiong ; Yang, Liming ; Tang, Yanhong ; Liu, Chengbin</creatorcontrib><description>As charge storage occurs both on the surface and in the bulk of material, the dynamics of charge storage is a key issue in the practice of energy storage. Although the energy storage can be increased in the bulk of the material, it often suffers from a quite slow kinetics, which seriously hinders the rate capability. Keeping high surface-induced capacitive contribution is proposed to address this issue. Herein, a porous scaffold, TiO2 nanotube arrays grown in a Ti foil (TiO2 NTs/Ti) is selected as the current collector for electrodeposition of porous polyaniline/reduced graphene oxide (PANI/rGO) hybrid film. The capacitive contribution of PANI/rGO@TiO2/Ti is quantitatively evaluated, showing a high surface-induced capacitive contribution up to 58% at high rates (&gt;25 mV s−1) and large electron transfer coefficient of 2. As a result, the electrode not only shows an ultrahigh specific capacity of 908 C g−1 at 1 mV s−1, but also delivers an outstanding rate capacity of 310 C g−1 at 500 mV s−1. PANI/rGO@TiO2/Ti also shows excellent cycling stability with 80% capacity retention after 10,000 cycles at a high current density of 25 A g−1.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.137615</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Arrays ; Charge materials ; Electrochemical energy storage ; Electron transfer ; Energy storage ; Foils ; Graphene ; Nanosheets ; Nanotubes ; Polyaniline ; Polyanilines ; Rate capability ; TiO2 nanotube arrays ; Titanium dioxide</subject><ispartof>Electrochimica acta, 2021-02, Vol.368, p.137615, Article 137615</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-7d07e76131bb6ba1e41eb47ccc27d219aa7b5fbbbac3b444c5713554df54e8a23</citedby><cites>FETCH-LOGICAL-c343t-7d07e76131bb6ba1e41eb47ccc27d219aa7b5fbbbac3b444c5713554df54e8a23</cites><orcidid>0000-0002-5664-0950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ding, Yangbin</creatorcontrib><creatorcontrib>Sheng, Haonan</creatorcontrib><creatorcontrib>Gong, Baozhi</creatorcontrib><creatorcontrib>Tang, Peisong</creatorcontrib><creatorcontrib>Pan, Guoxiang</creatorcontrib><creatorcontrib>Zeng, Yunxiong</creatorcontrib><creatorcontrib>Yang, Liming</creatorcontrib><creatorcontrib>Tang, Yanhong</creatorcontrib><creatorcontrib>Liu, Chengbin</creatorcontrib><title>Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability</title><title>Electrochimica acta</title><description>As charge storage occurs both on the surface and in the bulk of material, the dynamics of charge storage is a key issue in the practice of energy storage. Although the energy storage can be increased in the bulk of the material, it often suffers from a quite slow kinetics, which seriously hinders the rate capability. Keeping high surface-induced capacitive contribution is proposed to address this issue. Herein, a porous scaffold, TiO2 nanotube arrays grown in a Ti foil (TiO2 NTs/Ti) is selected as the current collector for electrodeposition of porous polyaniline/reduced graphene oxide (PANI/rGO) hybrid film. The capacitive contribution of PANI/rGO@TiO2/Ti is quantitatively evaluated, showing a high surface-induced capacitive contribution up to 58% at high rates (&gt;25 mV s−1) and large electron transfer coefficient of 2. As a result, the electrode not only shows an ultrahigh specific capacity of 908 C g−1 at 1 mV s−1, but also delivers an outstanding rate capacity of 310 C g−1 at 500 mV s−1. PANI/rGO@TiO2/Ti also shows excellent cycling stability with 80% capacity retention after 10,000 cycles at a high current density of 25 A g−1.</description><subject>Arrays</subject><subject>Charge materials</subject><subject>Electrochemical energy storage</subject><subject>Electron transfer</subject><subject>Energy storage</subject><subject>Foils</subject><subject>Graphene</subject><subject>Nanosheets</subject><subject>Nanotubes</subject><subject>Polyaniline</subject><subject>Polyanilines</subject><subject>Rate capability</subject><subject>TiO2 nanotube arrays</subject><subject>Titanium dioxide</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUdtqGzEQXUoLddN-QwV9XkdaaVfrvoXQGwTSh-RZjKRZr4wjbUdyqX-o31nZLnkNDAwznHPmcprmo-BrwcVwvVvjHl2BGuuOd7Ur9SD6V81KjFq2cuw3r5sV50K2ahiHt827nHeccz1ovmr-_kz7I8SwDxGvCf3BoWdbgmXGiCz9CR5ZhJjyjFgyS5E9hPvu3CoHiwyI4JgZ1GBz2M7tgjQleoLokOVDrRws4EJJxM57UvL4mT1Gj5QLRB_ilpW5jqKwDZGl6SzDCAqyE9XW1crxffNmgn3GD__zVfP49cvD7ff27v7bj9ubu9ZJJUurPddYr5fC2sGCQCXQKu2c67TvxAZA236y1oKTVinlei1k3ys_9QpH6ORV8-miu1D6dcBczC4dKNaRplMbITaj6IeK0heUo5Qz4WQWCk9ARyO4OZlidubZFHMyxVxMqcybCxPrEb8DkskuYP2VD1TxxqfwosY_tMKeRw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ding, Yangbin</creator><creator>Sheng, Haonan</creator><creator>Gong, Baozhi</creator><creator>Tang, Peisong</creator><creator>Pan, Guoxiang</creator><creator>Zeng, Yunxiong</creator><creator>Yang, Liming</creator><creator>Tang, Yanhong</creator><creator>Liu, Chengbin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5664-0950</orcidid></search><sort><creationdate>20210201</creationdate><title>Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability</title><author>Ding, Yangbin ; Sheng, Haonan ; Gong, Baozhi ; Tang, Peisong ; Pan, Guoxiang ; Zeng, Yunxiong ; Yang, Liming ; Tang, Yanhong ; Liu, Chengbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-7d07e76131bb6ba1e41eb47ccc27d219aa7b5fbbbac3b444c5713554df54e8a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Charge materials</topic><topic>Electrochemical energy storage</topic><topic>Electron transfer</topic><topic>Energy storage</topic><topic>Foils</topic><topic>Graphene</topic><topic>Nanosheets</topic><topic>Nanotubes</topic><topic>Polyaniline</topic><topic>Polyanilines</topic><topic>Rate capability</topic><topic>TiO2 nanotube arrays</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yangbin</creatorcontrib><creatorcontrib>Sheng, Haonan</creatorcontrib><creatorcontrib>Gong, Baozhi</creatorcontrib><creatorcontrib>Tang, Peisong</creatorcontrib><creatorcontrib>Pan, Guoxiang</creatorcontrib><creatorcontrib>Zeng, Yunxiong</creatorcontrib><creatorcontrib>Yang, Liming</creatorcontrib><creatorcontrib>Tang, Yanhong</creatorcontrib><creatorcontrib>Liu, Chengbin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yangbin</au><au>Sheng, Haonan</au><au>Gong, Baozhi</au><au>Tang, Peisong</au><au>Pan, Guoxiang</au><au>Zeng, Yunxiong</au><au>Yang, Liming</au><au>Tang, Yanhong</au><au>Liu, Chengbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability</atitle><jtitle>Electrochimica acta</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>368</volume><spage>137615</spage><pages>137615-</pages><artnum>137615</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>As charge storage occurs both on the surface and in the bulk of material, the dynamics of charge storage is a key issue in the practice of energy storage. Although the energy storage can be increased in the bulk of the material, it often suffers from a quite slow kinetics, which seriously hinders the rate capability. Keeping high surface-induced capacitive contribution is proposed to address this issue. Herein, a porous scaffold, TiO2 nanotube arrays grown in a Ti foil (TiO2 NTs/Ti) is selected as the current collector for electrodeposition of porous polyaniline/reduced graphene oxide (PANI/rGO) hybrid film. The capacitive contribution of PANI/rGO@TiO2/Ti is quantitatively evaluated, showing a high surface-induced capacitive contribution up to 58% at high rates (&gt;25 mV s−1) and large electron transfer coefficient of 2. As a result, the electrode not only shows an ultrahigh specific capacity of 908 C g−1 at 1 mV s−1, but also delivers an outstanding rate capacity of 310 C g−1 at 500 mV s−1. PANI/rGO@TiO2/Ti also shows excellent cycling stability with 80% capacity retention after 10,000 cycles at a high current density of 25 A g−1.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.137615</doi><orcidid>https://orcid.org/0000-0002-5664-0950</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2021-02, Vol.368, p.137615, Article 137615
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2491198156
source ScienceDirect Freedom Collection
subjects Arrays
Charge materials
Electrochemical energy storage
Electron transfer
Energy storage
Foils
Graphene
Nanosheets
Nanotubes
Polyaniline
Polyanilines
Rate capability
TiO2 nanotube arrays
Titanium dioxide
title Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyaniline/reduced%20graphene%20oxide%20nanosheets%20on%20TiO2%20nanotube%20arrays%20as%20a%20high-performance%20supercapacitor%20electrode:%20Understanding%20the%20origin%20of%20high%20rate%20capability&rft.jtitle=Electrochimica%20acta&rft.au=Ding,%20Yangbin&rft.date=2021-02-01&rft.volume=368&rft.spage=137615&rft.pages=137615-&rft.artnum=137615&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.137615&rft_dat=%3Cproquest_cross%3E2491198156%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-7d07e76131bb6ba1e41eb47ccc27d219aa7b5fbbbac3b444c5713554df54e8a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2491198156&rft_id=info:pmid/&rfr_iscdi=true