Loading…

Suppression of the annealing-induced hardening effect in ultrafine-grained Al at low temperatures

The influence of decreased temperatures of mechanical tension on the effect of annealing-induced hardening (AIH) in ultrafine-grained (UFG) aluminum of commercial purity is revealed and discussed for the first time. The UFG structure was formed by high-pressure torsion processing. The dependences of...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-01, Vol.802, p.140588, Article 140588
Main Authors: Orlova, T.S., Mavlyutov, A.M., Gutkin, M.Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influence of decreased temperatures of mechanical tension on the effect of annealing-induced hardening (AIH) in ultrafine-grained (UFG) aluminum of commercial purity is revealed and discussed for the first time. The UFG structure was formed by high-pressure torsion processing. The dependences of changes in yield strength, tensile strength and ductility, caused by annealing, on the deformation test temperature were experimentally obtained. The critical deformation temperature was revealed at which the AIH effect is completely suppressed. A theoretical explanation of this phenomenon is suggested.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2020.140588