Loading…

Mathematical modeling and simulation of nonlinear spacecraft rendezvous and formation flying problems via averaging method

•Mathematical model of governing differential equations is presented.•Radial, along-track and cross-track slowly varying parameters are developed.•Averaging method is applied to the nonlinear equation of relative motion.•The averaged model is useful for rendezvous and formation flying control approa...

Full description

Saved in:
Bibliographic Details
Published in:Communications in nonlinear science & numerical simulation 2021-04, Vol.95, p.105668, Article 105668
Main Authors: Ogundele, Ayansola D., Agboola, Olufemi A., Sinha, Subhash C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-3653c6c77cc9f153f5e869e8723ffe3677c9db337f924138ca4a6a456fcae3023
cites cdi_FETCH-LOGICAL-c331t-3653c6c77cc9f153f5e869e8723ffe3677c9db337f924138ca4a6a456fcae3023
container_end_page
container_issue
container_start_page 105668
container_title Communications in nonlinear science & numerical simulation
container_volume 95
creator Ogundele, Ayansola D.
Agboola, Olufemi A.
Sinha, Subhash C.
description •Mathematical model of governing differential equations is presented.•Radial, along-track and cross-track slowly varying parameters are developed.•Averaging method is applied to the nonlinear equation of relative motion.•The averaged model is useful for rendezvous and formation flying control approaches. The relative orbital motion problem of a deputy spacecraft with respect to a chief spacecraft is, generally, described using a set of differential equations governing the motion of the spacecraft relative to each other instead of describing their motion, separately, relative to the Earth. In this paper, new time-varying, time periodic cubic approximation model of spacecraft relative motion is developed from the original nonlinear relative equations of motion with the chief in elliptical orbit. Afterwards, averaging method is applied to the cubic model to obtain asymptotic approximations and periodic solutions. The formulation of the averaging solutions using averaging method affords us the opportunity to have a better insight of the relative motion dynamics. From the numerical simulations, the averaging model is in close agreement with the nonlinear model. This can be attributed to the inclusion of cubic nonlinear terms. The model is amenable to the long-term prediction of the behavior of the relative motion and useful for spacecraft formation flying analysis.
doi_str_mv 10.1016/j.cnsns.2020.105668
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491613558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570420304986</els_id><sourcerecordid>2491613558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-3653c6c77cc9f153f5e869e8723ffe3677c9db337f924138ca4a6a456fcae3023</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwC1gsMafYcWwnAwOq-JKKWGC2XOfcukrsYieV2l-PQ5iZ7nTvPffxZtktwQuCCb_fLbSLLi4KXIwVxnl1ls1IJapcFKI8TznGImcCl5fZVYw7nKialbPs9K76LXSqt1q1qPMNtNZtkHINirYb2iR4h7xBzrukgAoo7pUGHZTpUQDXwOngh_hLGB-6CTDtcRyzD37dQhfRwSqkDhDUZix30G99c51dGNVGuPmL8-zr-elz-ZqvPl7elo-rXFNK-pxyRjXXQmhdG8KoYVDxGipRUGOA8iTUzZpSYeqiJLTSqlRclYwbrYDigs6zu2luuuZ7gNjLnR-CSytlUdaEE8pYlbro1KWDjzGAkftgOxWOkmA5mix38tdkOZosJ5MT9TBRkB44WAgyagtOQ2MD6F423v7L_wCPbIk9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491613558</pqid></control><display><type>article</type><title>Mathematical modeling and simulation of nonlinear spacecraft rendezvous and formation flying problems via averaging method</title><source>ScienceDirect Journals</source><creator>Ogundele, Ayansola D. ; Agboola, Olufemi A. ; Sinha, Subhash C.</creator><creatorcontrib>Ogundele, Ayansola D. ; Agboola, Olufemi A. ; Sinha, Subhash C.</creatorcontrib><description>•Mathematical model of governing differential equations is presented.•Radial, along-track and cross-track slowly varying parameters are developed.•Averaging method is applied to the nonlinear equation of relative motion.•The averaged model is useful for rendezvous and formation flying control approaches. The relative orbital motion problem of a deputy spacecraft with respect to a chief spacecraft is, generally, described using a set of differential equations governing the motion of the spacecraft relative to each other instead of describing their motion, separately, relative to the Earth. In this paper, new time-varying, time periodic cubic approximation model of spacecraft relative motion is developed from the original nonlinear relative equations of motion with the chief in elliptical orbit. Afterwards, averaging method is applied to the cubic model to obtain asymptotic approximations and periodic solutions. The formulation of the averaging solutions using averaging method affords us the opportunity to have a better insight of the relative motion dynamics. From the numerical simulations, the averaging model is in close agreement with the nonlinear model. This can be attributed to the inclusion of cubic nonlinear terms. The model is amenable to the long-term prediction of the behavior of the relative motion and useful for spacecraft formation flying analysis.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2020.105668</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Averaging ; Chief spacecraft ; Clohessy–Wilshire (CW) equation ; Deputy spacecraft ; Differential equations ; Elliptical orbits ; Equations of motion ; Formation flying ; Mathematical models ; Motion control ; Nonlinear systems ; Relative motion ; Space rendezvous ; Spacecraft ; Tschauner–Hempel (TH) equation</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2021-04, Vol.95, p.105668, Article 105668</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-3653c6c77cc9f153f5e869e8723ffe3677c9db337f924138ca4a6a456fcae3023</citedby><cites>FETCH-LOGICAL-c331t-3653c6c77cc9f153f5e869e8723ffe3677c9db337f924138ca4a6a456fcae3023</cites><orcidid>0000-0002-8168-3530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ogundele, Ayansola D.</creatorcontrib><creatorcontrib>Agboola, Olufemi A.</creatorcontrib><creatorcontrib>Sinha, Subhash C.</creatorcontrib><title>Mathematical modeling and simulation of nonlinear spacecraft rendezvous and formation flying problems via averaging method</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•Mathematical model of governing differential equations is presented.•Radial, along-track and cross-track slowly varying parameters are developed.•Averaging method is applied to the nonlinear equation of relative motion.•The averaged model is useful for rendezvous and formation flying control approaches. The relative orbital motion problem of a deputy spacecraft with respect to a chief spacecraft is, generally, described using a set of differential equations governing the motion of the spacecraft relative to each other instead of describing their motion, separately, relative to the Earth. In this paper, new time-varying, time periodic cubic approximation model of spacecraft relative motion is developed from the original nonlinear relative equations of motion with the chief in elliptical orbit. Afterwards, averaging method is applied to the cubic model to obtain asymptotic approximations and periodic solutions. The formulation of the averaging solutions using averaging method affords us the opportunity to have a better insight of the relative motion dynamics. From the numerical simulations, the averaging model is in close agreement with the nonlinear model. This can be attributed to the inclusion of cubic nonlinear terms. The model is amenable to the long-term prediction of the behavior of the relative motion and useful for spacecraft formation flying analysis.</description><subject>Asymptotic methods</subject><subject>Averaging</subject><subject>Chief spacecraft</subject><subject>Clohessy–Wilshire (CW) equation</subject><subject>Deputy spacecraft</subject><subject>Differential equations</subject><subject>Elliptical orbits</subject><subject>Equations of motion</subject><subject>Formation flying</subject><subject>Mathematical models</subject><subject>Motion control</subject><subject>Nonlinear systems</subject><subject>Relative motion</subject><subject>Space rendezvous</subject><subject>Spacecraft</subject><subject>Tschauner–Hempel (TH) equation</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEEqXwC1gsMafYcWwnAwOq-JKKWGC2XOfcukrsYieV2l-PQ5iZ7nTvPffxZtktwQuCCb_fLbSLLi4KXIwVxnl1ls1IJapcFKI8TznGImcCl5fZVYw7nKialbPs9K76LXSqt1q1qPMNtNZtkHINirYb2iR4h7xBzrukgAoo7pUGHZTpUQDXwOngh_hLGB-6CTDtcRyzD37dQhfRwSqkDhDUZix30G99c51dGNVGuPmL8-zr-elz-ZqvPl7elo-rXFNK-pxyRjXXQmhdG8KoYVDxGipRUGOA8iTUzZpSYeqiJLTSqlRclYwbrYDigs6zu2luuuZ7gNjLnR-CSytlUdaEE8pYlbro1KWDjzGAkftgOxWOkmA5mix38tdkOZosJ5MT9TBRkB44WAgyagtOQ2MD6F423v7L_wCPbIk9</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Ogundele, Ayansola D.</creator><creator>Agboola, Olufemi A.</creator><creator>Sinha, Subhash C.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8168-3530</orcidid></search><sort><creationdate>202104</creationdate><title>Mathematical modeling and simulation of nonlinear spacecraft rendezvous and formation flying problems via averaging method</title><author>Ogundele, Ayansola D. ; Agboola, Olufemi A. ; Sinha, Subhash C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-3653c6c77cc9f153f5e869e8723ffe3677c9db337f924138ca4a6a456fcae3023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Averaging</topic><topic>Chief spacecraft</topic><topic>Clohessy–Wilshire (CW) equation</topic><topic>Deputy spacecraft</topic><topic>Differential equations</topic><topic>Elliptical orbits</topic><topic>Equations of motion</topic><topic>Formation flying</topic><topic>Mathematical models</topic><topic>Motion control</topic><topic>Nonlinear systems</topic><topic>Relative motion</topic><topic>Space rendezvous</topic><topic>Spacecraft</topic><topic>Tschauner–Hempel (TH) equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogundele, Ayansola D.</creatorcontrib><creatorcontrib>Agboola, Olufemi A.</creatorcontrib><creatorcontrib>Sinha, Subhash C.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogundele, Ayansola D.</au><au>Agboola, Olufemi A.</au><au>Sinha, Subhash C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling and simulation of nonlinear spacecraft rendezvous and formation flying problems via averaging method</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2021-04</date><risdate>2021</risdate><volume>95</volume><spage>105668</spage><pages>105668-</pages><artnum>105668</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•Mathematical model of governing differential equations is presented.•Radial, along-track and cross-track slowly varying parameters are developed.•Averaging method is applied to the nonlinear equation of relative motion.•The averaged model is useful for rendezvous and formation flying control approaches. The relative orbital motion problem of a deputy spacecraft with respect to a chief spacecraft is, generally, described using a set of differential equations governing the motion of the spacecraft relative to each other instead of describing their motion, separately, relative to the Earth. In this paper, new time-varying, time periodic cubic approximation model of spacecraft relative motion is developed from the original nonlinear relative equations of motion with the chief in elliptical orbit. Afterwards, averaging method is applied to the cubic model to obtain asymptotic approximations and periodic solutions. The formulation of the averaging solutions using averaging method affords us the opportunity to have a better insight of the relative motion dynamics. From the numerical simulations, the averaging model is in close agreement with the nonlinear model. This can be attributed to the inclusion of cubic nonlinear terms. The model is amenable to the long-term prediction of the behavior of the relative motion and useful for spacecraft formation flying analysis.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2020.105668</doi><orcidid>https://orcid.org/0000-0002-8168-3530</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2021-04, Vol.95, p.105668, Article 105668
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2491613558
source ScienceDirect Journals
subjects Asymptotic methods
Averaging
Chief spacecraft
Clohessy–Wilshire (CW) equation
Deputy spacecraft
Differential equations
Elliptical orbits
Equations of motion
Formation flying
Mathematical models
Motion control
Nonlinear systems
Relative motion
Space rendezvous
Spacecraft
Tschauner–Hempel (TH) equation
title Mathematical modeling and simulation of nonlinear spacecraft rendezvous and formation flying problems via averaging method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20and%20simulation%20of%20nonlinear%20spacecraft%20rendezvous%20and%20formation%20flying%20problems%20via%20averaging%20method&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Ogundele,%20Ayansola%20D.&rft.date=2021-04&rft.volume=95&rft.spage=105668&rft.pages=105668-&rft.artnum=105668&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2020.105668&rft_dat=%3Cproquest_cross%3E2491613558%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-3653c6c77cc9f153f5e869e8723ffe3677c9db337f924138ca4a6a456fcae3023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2491613558&rft_id=info:pmid/&rfr_iscdi=true