Loading…
Energy Efficiency Opposition-Based Learning and Brain Storm Optimization for VNF-SC Deployment in IoT
Network Function Virtualization (NFV) can provide the resource according to the request and can improve the flexibility of the network. It has become the key technology of the Internet of Things (IoT). Resource scheduling for the virtual network function service chain (VNF-SC) is the key issue of th...
Saved in:
Published in: | Wireless communications and mobile computing 2021, Vol.2021 (1) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Network Function Virtualization (NFV) can provide the resource according to the request and can improve the flexibility of the network. It has become the key technology of the Internet of Things (IoT). Resource scheduling for the virtual network function service chain (VNF-SC) is the key issue of the NFV. Energy consumption is an important indicator for the IoT; we take the energy consumption into the objective and define a novel objective to satisfying different objectives of the decision-maker. Due to the complexity of VNF-SC deployment problem, through taking into consideration of the heterogeneity of nodes (each node only can provide some specific VNFs), and the limitation of resources in each node, a novel optimal model is constructed to define the problem of VNF-SC deployment problem. To solve the optimization model effectively, a weighted center opposition-based learning is introduced to brainstorm optimization to find the optimal solution (OBLBSO). To show the efficiency of the proposed algorithm, numerous of simulation experiments have been conducted. Experimental results indicate that OBLBSO can improve the accuracy of the solution than compared algorithm. |
---|---|
ISSN: | 1530-8669 1530-8677 |
DOI: | 10.1155/2021/6651112 |