Loading…
A higher‐order Trace finite element method for shells
A higher‐order fictitious domain method (FDM) for Reissner–Mindlin shells is proposed which uses a three‐dimensional background mesh for the discretization. The midsurface of the shell is immersed into the higher‐order background mesh and the geometry is implied by level‐set functions. The mechanica...
Saved in:
Published in: | International journal for numerical methods in engineering 2021-03, Vol.122 (5), p.1217-1238, Article nme.6558 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2938-1cf9537c7d25270455214da0ebb2739c0562aa75b71fc33158104fb50e6b36a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2938-1cf9537c7d25270455214da0ebb2739c0562aa75b71fc33158104fb50e6b36a3 |
container_end_page | 1238 |
container_issue | 5 |
container_start_page | 1217 |
container_title | International journal for numerical methods in engineering |
container_volume | 122 |
creator | Schöllhammer, Daniel Fries, Thomas‐Peter |
description | A higher‐order fictitious domain method (FDM) for Reissner–Mindlin shells is proposed which uses a three‐dimensional background mesh for the discretization. The midsurface of the shell is immersed into the higher‐order background mesh and the geometry is implied by level‐set functions. The mechanical model is based on the tangential differential calculus which extends the classical models based on curvilinear coordinates to implicit geometries. The shell model is described by partial differential equations on manifolds and the resulting FDM may typically be called Trace FEM. The three standard key aspects of FDMs have to be addressed in the Trace FEM as well to allow for a higher‐order accurate method: (i) numerical integration in the cut background elements, (ii) stabilization of awkward cut situations and elimination of linear dependencies, and (iii) enforcement of boundary conditions using Nitsche's method. The numerical results confirm that higher‐order accurate results are enabled by the proposed method provided that the solutions are sufficiently smooth. |
doi_str_mv | 10.1002/nme.6558 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491815135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491815135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-1cf9537c7d25270455214da0ebb2739c0562aa75b71fc33158104fb50e6b36a3</originalsourceid><addsrcrecordid>eNp10L1OwzAQwHELgUQpSDyCJRaWlDs7jpOxqsqHVGDpbjnJmaTKR7FToW48As_Ik5BSVqYb7qc76c_YNcIMAcRd19IsUSo9YROETEcgQJ-yybjKIpWleM4uQtgAICqQE6bnvKrfKvLfn1-9L8nztbcFcVd39UCcGmqpG3hLQ9WX3PWeh4qaJlyyM2ebQFd_c8rW98v14jFavT48LearqBCZTCMsXKakLnQplNAQKyUwLi1QngstswJUIqzVKtfoCilRpQixyxVQksvEyim7OZ7d-v59R2Ewm37nu_GjEXGGKSqUalS3R1X4PgRPzmx93Vq_NwjmUMWMVcyhykijI_2oG9r_68zL8_LX_wBpTWHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491815135</pqid></control><display><type>article</type><title>A higher‐order Trace finite element method for shells</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Schöllhammer, Daniel ; Fries, Thomas‐Peter</creator><creatorcontrib>Schöllhammer, Daniel ; Fries, Thomas‐Peter</creatorcontrib><description>A higher‐order fictitious domain method (FDM) for Reissner–Mindlin shells is proposed which uses a three‐dimensional background mesh for the discretization. The midsurface of the shell is immersed into the higher‐order background mesh and the geometry is implied by level‐set functions. The mechanical model is based on the tangential differential calculus which extends the classical models based on curvilinear coordinates to implicit geometries. The shell model is described by partial differential equations on manifolds and the resulting FDM may typically be called Trace FEM. The three standard key aspects of FDMs have to be addressed in the Trace FEM as well to allow for a higher‐order accurate method: (i) numerical integration in the cut background elements, (ii) stabilization of awkward cut situations and elimination of linear dependencies, and (iii) enforcement of boundary conditions using Nitsche's method. The numerical results confirm that higher‐order accurate results are enabled by the proposed method provided that the solutions are sufficiently smooth.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6558</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Boundary conditions ; Differential calculus ; Differential geometry ; fictitious domain methods ; Finite element method ; implicit geometries ; manifolds ; Mathematical models ; Mindlin plates ; Numerical integration ; Partial differential equations ; shells ; Spherical coordinates ; tangential differential calculus ; Trace FEM</subject><ispartof>International journal for numerical methods in engineering, 2021-03, Vol.122 (5), p.1217-1238, Article nme.6558</ispartof><rights>2020 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-1cf9537c7d25270455214da0ebb2739c0562aa75b71fc33158104fb50e6b36a3</citedby><cites>FETCH-LOGICAL-c2938-1cf9537c7d25270455214da0ebb2739c0562aa75b71fc33158104fb50e6b36a3</cites><orcidid>0000-0002-9285-5561 ; 0000-0003-1210-1557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schöllhammer, Daniel</creatorcontrib><creatorcontrib>Fries, Thomas‐Peter</creatorcontrib><title>A higher‐order Trace finite element method for shells</title><title>International journal for numerical methods in engineering</title><description>A higher‐order fictitious domain method (FDM) for Reissner–Mindlin shells is proposed which uses a three‐dimensional background mesh for the discretization. The midsurface of the shell is immersed into the higher‐order background mesh and the geometry is implied by level‐set functions. The mechanical model is based on the tangential differential calculus which extends the classical models based on curvilinear coordinates to implicit geometries. The shell model is described by partial differential equations on manifolds and the resulting FDM may typically be called Trace FEM. The three standard key aspects of FDMs have to be addressed in the Trace FEM as well to allow for a higher‐order accurate method: (i) numerical integration in the cut background elements, (ii) stabilization of awkward cut situations and elimination of linear dependencies, and (iii) enforcement of boundary conditions using Nitsche's method. The numerical results confirm that higher‐order accurate results are enabled by the proposed method provided that the solutions are sufficiently smooth.</description><subject>Boundary conditions</subject><subject>Differential calculus</subject><subject>Differential geometry</subject><subject>fictitious domain methods</subject><subject>Finite element method</subject><subject>implicit geometries</subject><subject>manifolds</subject><subject>Mathematical models</subject><subject>Mindlin plates</subject><subject>Numerical integration</subject><subject>Partial differential equations</subject><subject>shells</subject><subject>Spherical coordinates</subject><subject>tangential differential calculus</subject><subject>Trace FEM</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10L1OwzAQwHELgUQpSDyCJRaWlDs7jpOxqsqHVGDpbjnJmaTKR7FToW48As_Ik5BSVqYb7qc76c_YNcIMAcRd19IsUSo9YROETEcgQJ-yybjKIpWleM4uQtgAICqQE6bnvKrfKvLfn1-9L8nztbcFcVd39UCcGmqpG3hLQ9WX3PWeh4qaJlyyM2ebQFd_c8rW98v14jFavT48LearqBCZTCMsXKakLnQplNAQKyUwLi1QngstswJUIqzVKtfoCilRpQixyxVQksvEyim7OZ7d-v59R2Ewm37nu_GjEXGGKSqUalS3R1X4PgRPzmx93Vq_NwjmUMWMVcyhykijI_2oG9r_68zL8_LX_wBpTWHE</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Schöllhammer, Daniel</creator><creator>Fries, Thomas‐Peter</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9285-5561</orcidid><orcidid>https://orcid.org/0000-0003-1210-1557</orcidid></search><sort><creationdate>20210315</creationdate><title>A higher‐order Trace finite element method for shells</title><author>Schöllhammer, Daniel ; Fries, Thomas‐Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-1cf9537c7d25270455214da0ebb2739c0562aa75b71fc33158104fb50e6b36a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Differential calculus</topic><topic>Differential geometry</topic><topic>fictitious domain methods</topic><topic>Finite element method</topic><topic>implicit geometries</topic><topic>manifolds</topic><topic>Mathematical models</topic><topic>Mindlin plates</topic><topic>Numerical integration</topic><topic>Partial differential equations</topic><topic>shells</topic><topic>Spherical coordinates</topic><topic>tangential differential calculus</topic><topic>Trace FEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schöllhammer, Daniel</creatorcontrib><creatorcontrib>Fries, Thomas‐Peter</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schöllhammer, Daniel</au><au>Fries, Thomas‐Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A higher‐order Trace finite element method for shells</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2021-03-15</date><risdate>2021</risdate><volume>122</volume><issue>5</issue><spage>1217</spage><epage>1238</epage><pages>1217-1238</pages><artnum>nme.6558</artnum><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>A higher‐order fictitious domain method (FDM) for Reissner–Mindlin shells is proposed which uses a three‐dimensional background mesh for the discretization. The midsurface of the shell is immersed into the higher‐order background mesh and the geometry is implied by level‐set functions. The mechanical model is based on the tangential differential calculus which extends the classical models based on curvilinear coordinates to implicit geometries. The shell model is described by partial differential equations on manifolds and the resulting FDM may typically be called Trace FEM. The three standard key aspects of FDMs have to be addressed in the Trace FEM as well to allow for a higher‐order accurate method: (i) numerical integration in the cut background elements, (ii) stabilization of awkward cut situations and elimination of linear dependencies, and (iii) enforcement of boundary conditions using Nitsche's method. The numerical results confirm that higher‐order accurate results are enabled by the proposed method provided that the solutions are sufficiently smooth.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.6558</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9285-5561</orcidid><orcidid>https://orcid.org/0000-0003-1210-1557</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2021-03, Vol.122 (5), p.1217-1238, Article nme.6558 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2491815135 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Boundary conditions Differential calculus Differential geometry fictitious domain methods Finite element method implicit geometries manifolds Mathematical models Mindlin plates Numerical integration Partial differential equations shells Spherical coordinates tangential differential calculus Trace FEM |
title | A higher‐order Trace finite element method for shells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20higher%E2%80%90order%20Trace%20finite%20element%20method%20for%20shells&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Sch%C3%B6llhammer,%20Daniel&rft.date=2021-03-15&rft.volume=122&rft.issue=5&rft.spage=1217&rft.epage=1238&rft.pages=1217-1238&rft.artnum=nme.6558&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6558&rft_dat=%3Cproquest_cross%3E2491815135%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2938-1cf9537c7d25270455214da0ebb2739c0562aa75b71fc33158104fb50e6b36a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2491815135&rft_id=info:pmid/&rfr_iscdi=true |