Loading…

A higher‐order Trace finite element method for shells

A higher‐order fictitious domain method (FDM) for Reissner–Mindlin shells is proposed which uses a three‐dimensional background mesh for the discretization. The midsurface of the shell is immersed into the higher‐order background mesh and the geometry is implied by level‐set functions. The mechanica...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2021-03, Vol.122 (5), p.1217-1238, Article nme.6558
Main Authors: Schöllhammer, Daniel, Fries, Thomas‐Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2938-1cf9537c7d25270455214da0ebb2739c0562aa75b71fc33158104fb50e6b36a3
cites cdi_FETCH-LOGICAL-c2938-1cf9537c7d25270455214da0ebb2739c0562aa75b71fc33158104fb50e6b36a3
container_end_page 1238
container_issue 5
container_start_page 1217
container_title International journal for numerical methods in engineering
container_volume 122
creator Schöllhammer, Daniel
Fries, Thomas‐Peter
description A higher‐order fictitious domain method (FDM) for Reissner–Mindlin shells is proposed which uses a three‐dimensional background mesh for the discretization. The midsurface of the shell is immersed into the higher‐order background mesh and the geometry is implied by level‐set functions. The mechanical model is based on the tangential differential calculus which extends the classical models based on curvilinear coordinates to implicit geometries. The shell model is described by partial differential equations on manifolds and the resulting FDM may typically be called Trace FEM. The three standard key aspects of FDMs have to be addressed in the Trace FEM as well to allow for a higher‐order accurate method: (i) numerical integration in the cut background elements, (ii) stabilization of awkward cut situations and elimination of linear dependencies, and (iii) enforcement of boundary conditions using Nitsche's method. The numerical results confirm that higher‐order accurate results are enabled by the proposed method provided that the solutions are sufficiently smooth.
doi_str_mv 10.1002/nme.6558
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491815135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491815135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-1cf9537c7d25270455214da0ebb2739c0562aa75b71fc33158104fb50e6b36a3</originalsourceid><addsrcrecordid>eNp10L1OwzAQwHELgUQpSDyCJRaWlDs7jpOxqsqHVGDpbjnJmaTKR7FToW48As_Ik5BSVqYb7qc76c_YNcIMAcRd19IsUSo9YROETEcgQJ-yybjKIpWleM4uQtgAICqQE6bnvKrfKvLfn1-9L8nztbcFcVd39UCcGmqpG3hLQ9WX3PWeh4qaJlyyM2ebQFd_c8rW98v14jFavT48LearqBCZTCMsXKakLnQplNAQKyUwLi1QngstswJUIqzVKtfoCilRpQixyxVQksvEyim7OZ7d-v59R2Ewm37nu_GjEXGGKSqUalS3R1X4PgRPzmx93Vq_NwjmUMWMVcyhykijI_2oG9r_68zL8_LX_wBpTWHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491815135</pqid></control><display><type>article</type><title>A higher‐order Trace finite element method for shells</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Schöllhammer, Daniel ; Fries, Thomas‐Peter</creator><creatorcontrib>Schöllhammer, Daniel ; Fries, Thomas‐Peter</creatorcontrib><description>A higher‐order fictitious domain method (FDM) for Reissner–Mindlin shells is proposed which uses a three‐dimensional background mesh for the discretization. The midsurface of the shell is immersed into the higher‐order background mesh and the geometry is implied by level‐set functions. The mechanical model is based on the tangential differential calculus which extends the classical models based on curvilinear coordinates to implicit geometries. The shell model is described by partial differential equations on manifolds and the resulting FDM may typically be called Trace FEM. The three standard key aspects of FDMs have to be addressed in the Trace FEM as well to allow for a higher‐order accurate method: (i) numerical integration in the cut background elements, (ii) stabilization of awkward cut situations and elimination of linear dependencies, and (iii) enforcement of boundary conditions using Nitsche's method. The numerical results confirm that higher‐order accurate results are enabled by the proposed method provided that the solutions are sufficiently smooth.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6558</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Boundary conditions ; Differential calculus ; Differential geometry ; fictitious domain methods ; Finite element method ; implicit geometries ; manifolds ; Mathematical models ; Mindlin plates ; Numerical integration ; Partial differential equations ; shells ; Spherical coordinates ; tangential differential calculus ; Trace FEM</subject><ispartof>International journal for numerical methods in engineering, 2021-03, Vol.122 (5), p.1217-1238, Article nme.6558</ispartof><rights>2020 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-1cf9537c7d25270455214da0ebb2739c0562aa75b71fc33158104fb50e6b36a3</citedby><cites>FETCH-LOGICAL-c2938-1cf9537c7d25270455214da0ebb2739c0562aa75b71fc33158104fb50e6b36a3</cites><orcidid>0000-0002-9285-5561 ; 0000-0003-1210-1557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schöllhammer, Daniel</creatorcontrib><creatorcontrib>Fries, Thomas‐Peter</creatorcontrib><title>A higher‐order Trace finite element method for shells</title><title>International journal for numerical methods in engineering</title><description>A higher‐order fictitious domain method (FDM) for Reissner–Mindlin shells is proposed which uses a three‐dimensional background mesh for the discretization. The midsurface of the shell is immersed into the higher‐order background mesh and the geometry is implied by level‐set functions. The mechanical model is based on the tangential differential calculus which extends the classical models based on curvilinear coordinates to implicit geometries. The shell model is described by partial differential equations on manifolds and the resulting FDM may typically be called Trace FEM. The three standard key aspects of FDMs have to be addressed in the Trace FEM as well to allow for a higher‐order accurate method: (i) numerical integration in the cut background elements, (ii) stabilization of awkward cut situations and elimination of linear dependencies, and (iii) enforcement of boundary conditions using Nitsche's method. The numerical results confirm that higher‐order accurate results are enabled by the proposed method provided that the solutions are sufficiently smooth.</description><subject>Boundary conditions</subject><subject>Differential calculus</subject><subject>Differential geometry</subject><subject>fictitious domain methods</subject><subject>Finite element method</subject><subject>implicit geometries</subject><subject>manifolds</subject><subject>Mathematical models</subject><subject>Mindlin plates</subject><subject>Numerical integration</subject><subject>Partial differential equations</subject><subject>shells</subject><subject>Spherical coordinates</subject><subject>tangential differential calculus</subject><subject>Trace FEM</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10L1OwzAQwHELgUQpSDyCJRaWlDs7jpOxqsqHVGDpbjnJmaTKR7FToW48As_Ik5BSVqYb7qc76c_YNcIMAcRd19IsUSo9YROETEcgQJ-yybjKIpWleM4uQtgAICqQE6bnvKrfKvLfn1-9L8nztbcFcVd39UCcGmqpG3hLQ9WX3PWeh4qaJlyyM2ebQFd_c8rW98v14jFavT48LearqBCZTCMsXKakLnQplNAQKyUwLi1QngstswJUIqzVKtfoCilRpQixyxVQksvEyim7OZ7d-v59R2Ewm37nu_GjEXGGKSqUalS3R1X4PgRPzmx93Vq_NwjmUMWMVcyhykijI_2oG9r_68zL8_LX_wBpTWHE</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Schöllhammer, Daniel</creator><creator>Fries, Thomas‐Peter</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9285-5561</orcidid><orcidid>https://orcid.org/0000-0003-1210-1557</orcidid></search><sort><creationdate>20210315</creationdate><title>A higher‐order Trace finite element method for shells</title><author>Schöllhammer, Daniel ; Fries, Thomas‐Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-1cf9537c7d25270455214da0ebb2739c0562aa75b71fc33158104fb50e6b36a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Differential calculus</topic><topic>Differential geometry</topic><topic>fictitious domain methods</topic><topic>Finite element method</topic><topic>implicit geometries</topic><topic>manifolds</topic><topic>Mathematical models</topic><topic>Mindlin plates</topic><topic>Numerical integration</topic><topic>Partial differential equations</topic><topic>shells</topic><topic>Spherical coordinates</topic><topic>tangential differential calculus</topic><topic>Trace FEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schöllhammer, Daniel</creatorcontrib><creatorcontrib>Fries, Thomas‐Peter</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schöllhammer, Daniel</au><au>Fries, Thomas‐Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A higher‐order Trace finite element method for shells</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2021-03-15</date><risdate>2021</risdate><volume>122</volume><issue>5</issue><spage>1217</spage><epage>1238</epage><pages>1217-1238</pages><artnum>nme.6558</artnum><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>A higher‐order fictitious domain method (FDM) for Reissner–Mindlin shells is proposed which uses a three‐dimensional background mesh for the discretization. The midsurface of the shell is immersed into the higher‐order background mesh and the geometry is implied by level‐set functions. The mechanical model is based on the tangential differential calculus which extends the classical models based on curvilinear coordinates to implicit geometries. The shell model is described by partial differential equations on manifolds and the resulting FDM may typically be called Trace FEM. The three standard key aspects of FDMs have to be addressed in the Trace FEM as well to allow for a higher‐order accurate method: (i) numerical integration in the cut background elements, (ii) stabilization of awkward cut situations and elimination of linear dependencies, and (iii) enforcement of boundary conditions using Nitsche's method. The numerical results confirm that higher‐order accurate results are enabled by the proposed method provided that the solutions are sufficiently smooth.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6558</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9285-5561</orcidid><orcidid>https://orcid.org/0000-0003-1210-1557</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2021-03, Vol.122 (5), p.1217-1238, Article nme.6558
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2491815135
source Wiley-Blackwell Read & Publish Collection
subjects Boundary conditions
Differential calculus
Differential geometry
fictitious domain methods
Finite element method
implicit geometries
manifolds
Mathematical models
Mindlin plates
Numerical integration
Partial differential equations
shells
Spherical coordinates
tangential differential calculus
Trace FEM
title A higher‐order Trace finite element method for shells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20higher%E2%80%90order%20Trace%20finite%20element%20method%20for%20shells&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Sch%C3%B6llhammer,%20Daniel&rft.date=2021-03-15&rft.volume=122&rft.issue=5&rft.spage=1217&rft.epage=1238&rft.pages=1217-1238&rft.artnum=nme.6558&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6558&rft_dat=%3Cproquest_cross%3E2491815135%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2938-1cf9537c7d25270455214da0ebb2739c0562aa75b71fc33158104fb50e6b36a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2491815135&rft_id=info:pmid/&rfr_iscdi=true